Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

'Role reversal' for the receptor PAR1 in sepsis-induced vascular damage

Abstract

Sepsis is a deadly disease characterized by considerable derangement of the proinflammatory, anti-inflammatory and coagulation responses. Protease-activated receptor 1 (PAR1), an important regulator of endothelial barrier function and blood coagulation, has been proposed to be involved in the lethal sequelae of sepsis, but it is unknown whether activation of PAR1 is beneficial or harmful. Using a cell-penetrating peptide (pepducin) approach, we provide evidence that PAR1 switched from being a vascular-disruptive receptor to a vascular-protective receptor during the progression of sepsis in mice. Unexpectedly, we found that the protective effects of PAR1 required transactivation of PAR2 signaling pathways. Our results suggest therapeutics that selectively activate PAR1-PAR2 complexes may be beneficial in the treatment of sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of PAR1 agonist and antagonist pepducins on the survival of septic mice.
Figure 2: Effect of activation or inhibition of PAR1 on lung vascular permeability in septic mice.
Figure 3: Treatment of septic mice with PAR1-based pepducins inhibits DIC.
Figure 4: The beneficial effects of PAR1 agonists on endothelial barrier function require PAR2.
Figure 5: The protective effects of the PAR1-agonist pepducin on the survival, DIC and vascular permeability of septic mice require PAR2.
Figure 6: The endothelial barrier–restoring activity of thrombin and APC requires PAR1 and PAR2.
Figure 7: PAR1-PAR2 switching of Rac and Rho signaling in endotoxin-stimulated endothelium.

Similar content being viewed by others

References

  1. Hotchkiss, R.S. & Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Riedemann, N.C., Guo, R.F. & Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Parrillo, J.E. Pathogenetic mechanisms of septic shock. N. Engl. J. Med. 328, 1471–1477 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Kaneider, N.C., Agarwal, A., Leger, A.J. & Kuliopulos, A. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat. Med. 11, 661–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, H., Siddiqui, J. & Remick, D.G. Mechanisms of mortality in early and late sepsis. Infect. Immun. 74, 5227–5235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esmon, C.T. Interactions between the innate immune and blood coagulation systems. Trends Immunol. 25, 536–542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernard, G.R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Mosnier, L.O., Gale, A.J., Yegnesaran, S. & Griffin, J.H. Activated Protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood 104, 1740–1744 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Vu, T.-K.H., Hung, D.T., Wheaton, V.I. & Coughlin, S.R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor action. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Kuliopulos, A. et al. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38, 4572–4585 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Seeley, S. et al. Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding. Chem. Biol. 10, 1033–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Leger, A. et al. Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation 113, 1244–1254 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Tsopanoglou, N.E. & Maragoudakis, M.E. On the mechanism of thrombin-induced angiogenesis. J. Biol. Chem. 274, 23969–23976 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Griffin, C.T., Srinivasan, Y., Zheng, Y.-W., Huang, W. & Coughlin, S.R. A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 293, 1666–1670 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Caunt, M., Huang, Y.-Q., Brooks, P.C. & Karpatkin, S. Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J. Thromb. Haemost. 1, 2097–2102 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Shibata, M. et al. Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation 103, 1799–1805 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kerschen, E.J. et al. Mechanisms for mortality reduction by activated protein c in severe sepsis. Blood 108, 1 (2006).

    Article  Google Scholar 

  21. Garcia, J.G., Davis, H.W. & Patterson, C.E. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell. Physiol. 163, 510–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Essler, M. et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273, 21867–21874 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Klarenbach, S.W., Chipiuk, A., Nelson, R.C., Hollenberg, M.D. & Murray, A.G. Differential actions of PAR2 and PAR1 in stimulating human endothelial cell exocytosis and permeability: the role of Rho-GTPases. Circ. Res. 92, 272–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Vouret-Craviari, V., Grall, D. & Obberghen-Schilling, E.V. Modulation of Rho GTPase activity in endothelial cells by selective proteinase-activated receptor (PAR) agonists. J. Thromb. Haemost. 1, 1103–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Covic, L., Gresser, A.L., Talavera, J., Swift, S. & Kuliopulos, A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. USA 99, 643–648 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nystedt, S., Ramakrishnan, V. & Sundelin, J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J. Biol. Chem. 271, 14910–14915 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Mirza, H., Yatsula, V. & Bahou, W.F. The proteinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J. Clin. Inv. 97, 1705–1714 (1996).

    Article  CAS  Google Scholar 

  28. McCoy, C. & Matthews, S.J. Drotrecogin alfa (recombinant human activated protein C) for the treatment of severe sepsis. Clin. Ther. 25, 396–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Abraham, E. et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N. Engl. J. Med. 353, 1332–1341 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Annane, D., Bellissant, E. & Cavaillon, J.-M. Septic shock. Lancet 365, 63–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ware, L.B. & Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Covic, L., Misra, M., Badar, J., Singh, C. & Kuliopulos, A. Pepducin-based intervention of thrombin receptor signaling and systemic platelet activation. Nat. Med. 8, 1161–1165 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto, K., Takaki, A., Takeda, S., Katoh, H. & Ohsato, K. Coagulopathy in disseminated intravascular coagulation due to abdominal sepsis: determination of prothrombin fragment 1 + 2 and other markers. Haemostasis 22, 17–24 (1992).

    CAS  PubMed  Google Scholar 

  34. van Nieuw Amerongen, G.P., Draijer, R., Vermeer, M.A. & van Hinsbergh, V.W. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ. Res. 83, 1115–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. O'Brien, P.J. et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275, 13502–13509 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, J., Ishii, M., Wang, L., Ishii, K. & Coughlin, S.R. Thrombin receptor activation: confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041–16045 (1994).

    CAS  PubMed  Google Scholar 

  37. Nguyen, N., Kuliopulos, A., Graham, R.A. & Covic, L. Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloprotease-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res. 66, 2658–2665 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Finigan, J.H. et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J. Biol. Chem. 280, 17286–17293 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Feistritzer, C. & Riewald, M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105, 3178–3184 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Bar-Sagi, D. & Hall, A. Ras and Rho GTPases: a family reunion. Cell 103, 227–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sharma, A. et al. Protection against acute pancreatitis by activation of protease-activated receptor-2. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G388–G395 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Pawlinski, R. et al. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia. Blood 103, 1342–1347 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Camerer, E. et al. Roles of protease-activated receptors in a mouse model of endotoxemia. Blood 107, 3912–3921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moffatt, J.D., Jeffrey, K.L. & Cocks, T.M. Protease-activated receptor-2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of polymorphonuclear leukocytes into the airways of mice. Am. J. Respir. Cell Mol. Biol. 26, 680–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Morello, S. et al. A protective role for proteinase activated receptor 2 in airways of lipopolysaccharide-treated rats. Biochem. Pharmacol. 71, 223–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Napoli, C. et al. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc. Natl. Acad. Sci. USA 97, 3678–3683 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vergnolle, N., Wallace, J.L., Bunnett, N.W. & Hollenberg, M.D. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci. 22, 146–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Ferrell, W.R. et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Invest. 111, 35–41 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi, X., Gangadharan, B., Brass, L.F., Ruf, W. & Mueller, B.M. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol. Cancer Res. 2, 395–402 (2004).

    CAS  PubMed  Google Scholar 

  50. Edgell, C.J., McDonald, C.C. & Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80, 3734–3737 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ren, X.D. & Schwartz, M.A. Determination of GTP loading on Rho. Methods Enzymol. 325, 264–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Darrow, A.L. et al. Biological consequences of thrombin receptor deficiency in mice. Thromb. Haem. 76, 860–866 (1996).

    Article  CAS  Google Scholar 

  53. Damiano, B.P. et al. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J. Pharmacol. Exp. Ther. 288, 671–678 (1999).

    CAS  PubMed  Google Scholar 

  54. Ness, T.E., Hogaboam, C.M., Strieter, R.M. & Kunkel, S.L. Immunomodulatory role of CXCR2 during experimental septic peritonitis. J. Immunol. 171, 3775–3784 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Patterson, C.E., Rhoades, R.A. & Garcia, J.G. Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J. Appl. Physiol. 72, 865–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Covic, L., Gresser, A.L. & Kuliopulos, A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39, 5458–5467 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Edgell and J. Sondek (University of North Carolina, Chapel Hill) for EA.hy926 cells, GST-rhotekin and the GST-PAK pGEX4T constructs, and R. Buchsbaum (Tufts–New England Medical Center) for the Myc-tagged Rac constructs. Confocal FRET microscopy was done in the Tufts University Neuroscience Imaging Core Facility. Supported by the Austrian Science Fund (J-2342-B05 to N.C.K.), the American Heart Association (A.J.L.) and the National Institutes of Health (HL64701, HL57905 and CA122992 to A.K.; CA104406 to L.C.).

Author information

Authors and Affiliations

Authors

Contributions

N.C.K. and A.K. conceptualized and designed the experiments; N.C.K., A.J.L., A.A., N.N. and L.C. did the experiments; G.P. and C.D. generated and provided Par1−/− and Par2−/− mice and intellectual contributions; and N.C.K., L.C. and A.K. analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Athan Kuliopulos.

Ethics declarations

Competing interests

C.D. is an employee of Johnson & Johnson Pharmaceutical Company.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 6255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneider, N., Leger, A., Agarwal, A. et al. 'Role reversal' for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 8, 1303–1312 (2007). https://doi.org/10.1038/ni1525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing