Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior

Abstract

Over the past two centuries, prevalent models of energy and glucose homeostasis have emerged from careful anatomical descriptions in tandem with an understanding of cellular physiology. More recent technological advances have culminated in the identification of peripheral and central factors that influence neural circuits regulating metabolism. This Review highlights contributions to our understanding of peripheral and central factors regulating food intake and energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central regulation of food intake and energy expenditure.

Similar content being viewed by others

References

  1. Schwartz, M.W. & Porte, D. Jr. Diabetes, obesity, and the brain. Science 307, 375–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Bernard, C. Leçons de Physiologie Experimentale Appliquée à la Médecine (Baillière et Fils, Paris, 1855).

  3. Woods, S.C., Seeley, R.J., Porte, D. Jr. & Schwartz, M.W. Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Williams, K.W., Scott, M.M. & Elmquist, J.K. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur. J. Pharmacol. 660, 2–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coleman, D.L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Coleman, D.L. & Hummel, K.P. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217, 1298–1304 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J. & Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Yeo, G.S. & Heisler, L.K. Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, xxx–yyy (2012).

    Article  CAS  Google Scholar 

  10. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Barsh, G.S., Farooqi, I.S. & O'Rahilly, S. Genetics of body-weight regulation. Nature 404, 644–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Butler, A.A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Farooqi, I.S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutton, G.M. et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 147, 2183–2196 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, K.W. et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30, 2472–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michel, M.C. et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143–150 (1998).

    CAS  PubMed  Google Scholar 

  18. Baldock, P.A. et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J. Biol. Chem. 282, 19092–19102 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sainsbury, A. et al. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc. Natl. Acad. Sci. USA 99, 8938–8943 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, Y.C. et al. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS ONE 5, e11361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, Q. & Palmiter, R.D. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur. J. Pharmacol. 660, 21–27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeltser, L.M., Seeley, R.J. & Tschöp, M. Synaptic plasticity in circuits regulating energy balance. Nat. Neurosci. 15, xxx–yyy (2012).

    Article  CAS  Google Scholar 

  23. Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell. Biol. 22, 5027–5035 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padilla, S.L., Carmody, J.S. & Zeltser, L.M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tartaglia, L.A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, G.-H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Berglund, E.D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 122, 1000–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Morton, G.J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fak/fak) rats. Endocrinology 144, 2016–2024 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Morton, G.J. et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2, 411–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Huo, L. et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill, J.W. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 11, 286–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, A.W., Ste-Marie, L., Kaelin, C.B. & Barsh, G.S. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148, 72–80 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Berthoud, H.R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayes, M.R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scott, M.M., Williams, K.W., Rossi, J., Lee, C.E. & Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest. 121, 2413–2421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Skibicka, K.P. & Grill, H.J. Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology 150, 1705–1711 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bingham, N.C., Anderson, K.K., Reuter, A.L., Stallings, N.R. & Parker, K.L. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149, 2138–2148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi, H. et al. Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 294, E630–E639 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Grill, H.J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, G.J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16, 866–873 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Rogers, R.C., McTigue, D.M. & Hermann, G.E. Vagovagal reflex control of digestion: afferent modulation by neural and “endoneurocrine” factors. Am. J. Physiol. 268, G1–G10 (1995).

    CAS  PubMed  Google Scholar 

  48. Zheng, H. et al. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R720–R728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woods, S.C. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 9, 489–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Woods, S.C., Lotter, E.C., McKay, L.D. & Porte, D. Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979).

    Article  CAS  PubMed  Google Scholar 

  51. Könner, A.C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bruning, J.C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Spanswick, D., Smith, M.A., Groppi, V.E., Logan, S.D. & Ashford, M.L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Spanswick, D., Smith, M.A., Mirshamsi, S., Routh, V.H. & Ashford, M.L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat. Neurosci. 3, 757–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Hill, J.W. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bates, S.H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Qiu, J., Fang, Y., Ronnekleiv, O.K. & Kelly, M.J. Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J. Neurosci. 30, 1560–1565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klöckener, T. et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14, 911–918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Joshi, R.L. et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 15, 1542–1547 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arvat, E. et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J. Endocrinol. Invest. 23, 493–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Horvath, T.L., Diano, S., Sotonyi, P., Heiman, M. & Tschöp, M. Minireview: ghrelin and the regulation of energy balance—a hypothalamic perspective. Endocrinology 142, 4163–4169 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Zigman, J.M. & Elmquist, J.K. Minireview: from anorexia to obesity–the yin and yang of body weight control. Endocrinology 144, 3749–3756 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Zigman, J.M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564–3572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Barrera, J.G., Sandoval, D.A., D'Alessio, D.A. & Seeley, R.J. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat. Rev. Endocrinol. 7, 507–516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Turton, M.D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Scrocchi, L.A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Göke, R., Larsen, P.J., Mikkelsen, J.D. & Sheikh, S.P. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur. J. Neurosci. 7, 2294–2300 (1995).

    Article  PubMed  Google Scholar 

  72. Elias, C.F. et al. Chemical characterization of leptin-activated neurons in the rat brain. J. Comp. Neurol. 423, 261–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Gibbs, J., Young, R.C. & Smith, G.P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84, 488–495 (1973).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, G.P. Cholecystokinin and treatment of meal size: proof of principle. Obesity (Silver Spring) 14 (suppl. 4), S168–S170 (2006).

    Article  Google Scholar 

  75. Noble, F. et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol. Rev. 51, 745–781 (1999).

    CAS  PubMed  Google Scholar 

  76. South, E.H. & Ritter, R.C. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides 9, 601–612 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R. & Simansky, K.J. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036–1037 (1981).

    Article  CAS  PubMed  Google Scholar 

  78. Moran, T.H., Ladenheim, E.E. & Schwartz, G.J. Within-meal gut feedback signaling. Int. J. Obes. Relat. Metab. Disord. 25 (suppl. 5), S39–S41 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277, R582–R590 (1999).

    CAS  PubMed  Google Scholar 

  80. Baptista, V., Zheng, Z.L., Coleman, F.H., Rogers, R.C. & Travagli, R.A. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J. Neurophysiol. 94, 2763–2771 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Fan, W. et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7, 335–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. van den Pol, A.N. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 40, 1059–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tecott, L.H. et al. Eating disorder and epilepsy in mice lacking 5–HT2c serotonin receptors. Nature 374, 542–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Nonogaki, K., Strack, A.M., Dallman, M.F. & Tecott, L.H. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5–HT2C receptor gene. Nat. Med. 4, 1152–1156 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Xu, Y. et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nat. Neurosci. 13, 1457–1459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, Y. et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sohn, J.W. et al. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71, 488–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Atasoy, D., Betley, J.N., Su, H.H. & Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, Q., Clark, M.S. & Palmiter, R.D. Deciphering a neuronal circuit that mediates appetite. Nature 483, 594–597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Luquet, S., Phillips, C.T. & Palmiter, R.D. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28, 214–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Ramnanan, C.J., Edgerton, D.S. & Cherrington, A.D. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab. 15, 656–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tschöp, M.H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge M.M. Scott and L. Gautron for comments on the manuscript. This work was supported by the US National Institutes of Health (K01 DK087780 to K.W.W. and DK53301, MH61583, DK08876, DK081185 and DK71320 to J.K.E.) and by an award from the American Diabetes Association to J.K.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, K., Elmquist, J. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15, 1350–1355 (2012). https://doi.org/10.1038/nn.3217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing