Abstract
Over the past two centuries, prevalent models of energy and glucose homeostasis have emerged from careful anatomical descriptions in tandem with an understanding of cellular physiology. More recent technological advances have culminated in the identification of peripheral and central factors that influence neural circuits regulating metabolism. This Review highlights contributions to our understanding of peripheral and central factors regulating food intake and energy expenditure.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Schwartz, M.W. & Porte, D. Jr. Diabetes, obesity, and the brain. Science 307, 375â379 (2005).
Bernard, C. Leçons de Physiologie Experimentale Appliquée à la Médecine (Baillière et Fils, Paris, 1855).
Woods, S.C., Seeley, R.J., Porte, D. Jr. & Schwartz, M.W. Signals that regulate food intake and energy homeostasis. Science 280, 1378â1383 (1998).
Williams, K.W., Scott, M.M. & Elmquist, J.K. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur. J. Pharmacol. 660, 2â12 (2011).
Coleman, D.L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294â298 (1973).
Coleman, D.L. & Hummel, K.P. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217, 1298â1304 (1969).
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425â432 (1994).
Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J. & Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165â168 (1997).
Yeo, G.S. & Heisler, L.K. Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, xxxâyyy (2012).
Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493â505 (2005).
Barsh, G.S., Farooqi, I.S. & O'Rahilly, S. Genetics of body-weight regulation. Nature 404, 644â651 (2000).
Butler, A.A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518â3521 (2000).
Farooqi, I.S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085â1095 (2003).
Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195â204 (2011).
Sutton, G.M. et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 147, 2183â2196 (2006).
Williams, K.W. et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30, 2472â2479 (2010).
Michel, M.C. et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143â150 (1998).
Baldock, P.A. et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J. Biol. Chem. 282, 19092â19102 (2007).
Sainsbury, A. et al. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc. Natl. Acad. Sci. USA 99, 8938â8943 (2002).
Shi, Y.C. et al. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS ONE 5, e11361 (2010).
Wu, Q. & Palmiter, R.D. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur. J. Pharmacol. 660, 21â27 (2011).
Zeltser, L.M., Seeley, R.J. & Tschöp, M. Synaptic plasticity in circuits regulating energy balance. Nat. Neurosci. 15, xxxâyyy (2012).
Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell. Biol. 22, 5027â5035 (2002).
Padilla, S.L., Carmody, J.S. & Zeltser, L.M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403â405 (2010).
Tartaglia, L.A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263â1271 (1995).
Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491â495 (1996).
Lee, G.-H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632â635 (1996).
Berglund, E.D. et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Invest. 122, 1000â1009 (2012).
Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983â991 (2004).
Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63â72 (2005).
Morton, G.J. et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fak/fak) rats. Endocrinology 144, 2016â2024 (2003).
Morton, G.J. et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2, 411â420 (2005).
Huo, L. et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537â547 (2009).
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142â154 (2011).
Hill, J.W. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 11, 286â297 (2010).
Xu, A.W., Ste-Marie, L., Kaelin, C.B. & Barsh, G.S. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology 148, 72â80 (2007).
Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191â203 (2006).
Berthoud, H.R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15â25 (2008).
Hayes, M.R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77â83 (2010).
Scott, M.M., Williams, K.W., Rossi, J., Lee, C.E. & Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest. 121, 2413â2421 (2011).
Skibicka, K.P. & Grill, H.J. Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology 150, 1705â1711 (2009).
van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773â1785 (2008).
Bingham, N.C., Anderson, K.K., Reuter, A.L., Stallings, N.R. & Parker, K.L. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149, 2138â2148 (2008).
Shi, H. et al. Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 294, E630âE639 (2008).
Grill, H.J. et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239â246 (2002).
Schwartz, G.J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16, 866â873 (2000).
Rogers, R.C., McTigue, D.M. & Hermann, G.E. Vagovagal reflex control of digestion: afferent modulation by neural and âendoneurocrineâ factors. Am. J. Physiol. 268, G1âG10 (1995).
Zheng, H. et al. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R720âR728 (2010).
Woods, S.C. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 9, 489â498 (2009).
Woods, S.C., Lotter, E.C., McKay, L.D. & Porte, D. Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503â505 (1979).
Könner, A.C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438â449 (2007).
Bruning, J.C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122â2125 (2000).
Spanswick, D., Smith, M.A., Groppi, V.E., Logan, S.D. & Ashford, M.L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521â525 (1997).
Spanswick, D., Smith, M.A., Mirshamsi, S., Routh, V.H. & Ashford, M.L. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat. Neurosci. 3, 757â758 (2000).
Hill, J.W. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796â1805 (2008).
Bates, S.H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856â859 (2003).
Qiu, J., Fang, Y., Ronnekleiv, O.K. & Kelly, M.J. Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J. Neurosci. 30, 1560â1565 (2010).
Klöckener, T. et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14, 911â918 (2011).
Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106â109 (1996).
Joshi, R.L. et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 15, 1542â1547 (1996).
Arvat, E. et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J. Endocrinol. Invest. 23, 493â495 (2000).
Horvath, T.L., Diano, S., Sotonyi, P., Heiman, M. & Tschöp, M. Minireview: ghrelin and the regulation of energy balanceâa hypothalamic perspective. Endocrinology 142, 4163â4169 (2001).
Zigman, J.M. & Elmquist, J.K. Minireview: from anorexia to obesityâthe yin and yang of body weight control. Endocrinology 144, 3749â3756 (2003).
Zigman, J.M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564â3572 (2005).
Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409â1439 (2007).
Barrera, J.G., Sandoval, D.A., D'Alessio, D.A. & Seeley, R.J. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat. Rev. Endocrinol. 7, 507â516 (2011).
Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261â280 (1999).
Turton, M.D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69â72 (1996).
Scrocchi, L.A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254â1258 (1996).
Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117, 143â152 (2007).
Göke, R., Larsen, P.J., Mikkelsen, J.D. & Sheikh, S.P. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur. J. Neurosci. 7, 2294â2300 (1995).
Elias, C.F. et al. Chemical characterization of leptin-activated neurons in the rat brain. J. Comp. Neurol. 423, 261â281 (2000).
Gibbs, J., Young, R.C. & Smith, G.P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84, 488â495 (1973).
Smith, G.P. Cholecystokinin and treatment of meal size: proof of principle. Obesity (Silver Spring) 14 (suppl. 4), S168âS170 (2006).
Noble, F. et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol. Rev. 51, 745â781 (1999).
South, E.H. & Ritter, R.C. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides 9, 601â612 (1988).
Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R. & Simansky, K.J. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036â1037 (1981).
Moran, T.H., Ladenheim, E.E. & Schwartz, G.J. Within-meal gut feedback signaling. Int. J. Obes. Relat. Metab. Disord. 25 (suppl. 5), S39âS41 (2001).
Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277, R582âR590 (1999).
Baptista, V., Zheng, Z.L., Coleman, F.H., Rogers, R.C. & Travagli, R.A. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J. Neurophysiol. 94, 2763â2771 (2005).
Fan, W. et al. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7, 335â336 (2004).
van den Pol, A.N. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 40, 1059â1061 (2003).
Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351â355 (2011).
Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998â1000 (2008).
Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110â115 (2004).
Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511â522 (2012).
Tecott, L.H. et al. Eating disorder and epilepsy in mice lacking 5âHT2c serotonin receptors. Nature 374, 542â546 (1995).
Nonogaki, K., Strack, A.M., Dallman, M.F. & Tecott, L.H. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5âHT2C receptor gene. Nat. Med. 4, 1152â1156 (1998).
Xu, Y. et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nat. Neurosci. 13, 1457â1459 (2010).
Xu, Y. et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60, 582â589 (2008).
Sohn, J.W. et al. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71, 488â497 (2011).
Deisseroth, K. Optogenetics. Nat. Methods 8, 26â29 (2011).
Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154â165 (2010).
Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424â1428 (2011).
Atasoy, D., Betley, J.N., Su, H.H. & Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 488, 172â177 (2012).
Wu, Q., Clark, M.S. & Palmiter, R.D. Deciphering a neuronal circuit that mediates appetite. Nature 483, 594â597 (2012).
Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683â685 (2005).
Luquet, S., Phillips, C.T. & Palmiter, R.D. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28, 214â225 (2007).
Ramnanan, C.J., Edgerton, D.S. & Cherrington, A.D. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab. 15, 656â664 (2012).
Tschöp, M.H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57â63 (2012).
Acknowledgements
The authors gratefully acknowledge M.M. Scott and L. Gautron for comments on the manuscript. This work was supported by the US National Institutes of Health (K01 DK087780 to K.W.W. and DK53301, MH61583, DK08876, DK081185 and DK71320 to J.K.E.) and by an award from the American Diabetes Association to J.K.E.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Williams, K., Elmquist, J. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15, 1350â1355 (2012). https://doi.org/10.1038/nn.3217
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.3217
This article is cited by
-
Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins
Journal of Endocrinological Investigation (2024)
-
Sex-specific neurobehavioral and biochemical effects of developmental exposure to Malathion in offspring mice
Naunyn-Schmiedeberg's Archives of Pharmacology (2024)
-
Hypothalamic Grb10 enhances leptin signalling and promotes weight loss
Nature Metabolism (2023)
-
Potentials of Dietary Zinc Supplementation in Improving Growth Performance, Health Status, and Meat Quality of Broiler Chickens
Biological Trace Element Research (2023)
-
Developmental programming of hypothalamic melanocortin circuits
Experimental & Molecular Medicine (2022)