Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global dynamics of selective attention and its lapses in primary auditory cortex

Abstract

Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intermodal selective attention task.
Figure 2: Recording technique and ITC.
Figure 3: Long-timescale dynamics of oscillatory entrainment during a continuous selective intermodal attention task.
Figure 4: Slow counterphase fluctuation of delta oscillatory entrainment and alpha amplitude.
Figure 5: Entrainment-correlated patterns of cross-frequency coupling.
Figure 6: Distinct brain-state-dependent patterns of single-unit activity.
Figure 7: Entrainment-correlated changes in laminar delta and alpha coherence.

Similar content being viewed by others

References

  1. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

  2. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray, C.M., König, P., Engel, A.K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. O'Keefe, J. & Conway, D.H. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Buschman, T.J. & Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I. & Schroeder, C.E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Womelsdorf, T., Fries, P., Mitra, P.P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Fox, M.D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weissman, D.H., Roberts, K.C., Visscher, K.M. & Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Allers, K.A. et al. Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG. J. Neurophysiol. 87, 1118–1122 (2002).

    Article  PubMed  Google Scholar 

  13. de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. USA 107, 6040–6045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leopold, D.A., Murayama, Y. & Logothetis, N.K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 422–433 (2003).

    Article  PubMed  Google Scholar 

  15. Werner, G. & Mountcastle, V.B. The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol. 26, 958–977 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. Castellanos, F.X. et al. Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol. Psychiatry 57, 1416–1423 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leth-Steensen, C., Elbaz, Z.K. & Douglas, V.I. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. (Amst.) 104, 167–190 (2000).

    Article  CAS  Google Scholar 

  18. Smit, D.J., Linkenkaer-Hansen, K. & de Geus, E.J. Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics. J. Neurosci. 33, 11212–11220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding, N. & Simon, J.Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl. Acad. Sci. USA 109, 11854–11859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lakatos, P. et al. The spectrotemporal filter mechanism of auditory selective attention. Neuron 77, 750–761 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zion Golumbic, E.M. et al. Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77, 980–991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeman, J.A. & Nicholson, C. Experimental optimization of current source-density technique for anuran cerebellum. J. Neurophysiol. 38, 369–382 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. O'Connell, M.N., Barczak, A., Schroeder, C.E. & Lakatos, P. Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex. J. Neurosci. 34, 16496–16508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Connell, M.N., Falchier, A., McGinnis, T., Schroeder, C.E. & Lakatos, P. Dual mechanism of neuronal ensemble inhibition in primary auditory cortex. Neuron 69, 805–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bastos, A.M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Buffalo, E.A., Fries, P., Landman, R., Liang, H. & Desimone, R. A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. USA 107, 361–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Jensen, O. & Bonnefond, M. Prefrontal α- and β-band oscillations are involved in rule selection. Trends Cogn. Sci. 17, 10–12 (2013).

    Article  PubMed  Google Scholar 

  28. Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bonnefond, M. & Jensen, O. Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One 10, e0128667 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Spaak, E., Bonnefond, M., Maier, A., Leopold, D.A. & Jensen, O. Layer-specific entrainment of γ-band neural activity by the α rhythm in monkey visual cortex. Curr. Biol. 22, 2313–2318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. USA 111, 14332–14341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M. & McCormick, D.A. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J. Neurophysiol. 89, 1541–1566 (2003).

    Article  PubMed  Google Scholar 

  35. Robbins, A.A., Fox, S.E., Holmes, G.L., Scott, R.C. & Barry, J.M. Short duration waveforms recorded extracellularly from freely moving rats are representative of axonal activity. Front. Neural Circuits 7, 181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laufs, H. et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 100, 11053–11058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L. & Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 104, 13170–13175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B. & Bandettini, P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    Article  PubMed  Google Scholar 

  39. van den Brink, R.L., Wynn, S.C. & Nieuwenhuis, S. Post-error slowing as a consequence of disturbed low-frequency oscillatory phase entrainment. J. Neurosci. 34, 11096–11105 10 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl. Acad. Sci. USA 108, 19377–19382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foxe, J.J. & Snyder, A.C. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2, 154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Womelsdorf, T., Valiante, T.A., Sahin, N.T., Miller, K.J. & Tiesinga, P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci. 17, 1031–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Lakatos, P., Schroeder, C.E., Leitman, D.I. & Javitt, D.C. Predictive suppression of cortical excitability and its deficit in schizophrenia. J. Neurosci. 33, 11692–11702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garrity, A.G. et al. Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry 164, 450–457 (2007).

    Article  PubMed  Google Scholar 

  47. Whitfield-Gabrieli, S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. USA 106, 1279–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J.S. et al. Power spectral aspects of the default mode network in schizophrenia: an MEG study. BMC Neurosci. 15, 104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lakatos, P., O'Connell, M.N. & Barczak, A. Pondering the pulvinar. Neuron 89, 5–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Calderone, D.J., Lakatos, P., Butler, P.D. & Castellanos, F.X. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn. Sci. 18, 300–309 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Legatt, A.D., Arezzo, J. & Vaughan, H.G. Jr. Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials. J. Neurosci. Methods 2, 203–217 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. Lakatos, P. et al. Timing of pure tone and noise-evoked responses in macaque auditory cortex. Neuroreport 16, 933–937 (2005).

    Article  PubMed  Google Scholar 

  54. Steinschneider, M., Reser, D., Schroeder, C.E. & Arezzo, J.C. Tonotopic organization of responses reflecting stop consonant place of articulation in primary auditory cortex (A1) of the monkey. Brain Res. 674, 147–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Slotnick, B. A simple 2-transistor touch or lick detector circuit. J. Exp. Anal. Behav. 91, 253–255 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Merzenich, M.M. & Brugge, J.F. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res. 50, 275–296 (1973).

    Article  CAS  PubMed  Google Scholar 

  57. Rauschecker, J.P., Tian, B., Pons, T. & Mishkin, M. Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Maris, E., Schoffelen, J.M. & Fries, P. Nonparametric statistical testing of coherence differences. J. Neurosci. Methods 163, 161–175 (2007).

    Article  PubMed  Google Scholar 

  59. Kajikawa, Y., Falchier, A., Musacchia, G., Lakatos, P. & Schroeder, C.E. in The Neural Bases of Multisensory Processes (eds. Murray, M.M. & Wallace, M.T.) 65–98 (CRC Press, 2012).

  60. Schroeder, C.E., Molhom, S., Lakatos, P., Ritter, W. & Foxe, J.J. Human–simian correspondence in the early cortical processing of multisensory cues. Cogn. Process. 5, 140–151 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by NIH grant R01DC012947 from the NIDCD (P.L.) and R01MH109289 from the NIMH (D.C.J.).

Author information

Authors and Affiliations

Authors

Contributions

P.L. and M.N.O. designed the study. M.N.O., T.M. and D.R. performed the experiments. P.L. and D.C.J. designed the analyses. P.L., M.N.O., A.B. and S.A.N. performed the analyses. P.L. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Peter Lakatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakatos, P., Barczak, A., Neymotin, S. et al. Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci 19, 1707–1717 (2016). https://doi.org/10.1038/nn.4386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing