Abstract
How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuronâelectrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Debbie Maizels




Similar content being viewed by others
References
Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R. & Warland, D. Reading a neural code. Science 252, 1854â1857 (1991).
Laurent, G. A systems perspective on early olfactory coding. Science 286, 723â728 (1999).
Engel, A.K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704â716 (2001).
Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity computation, and information coding. J. Neurosci. 18, 3870â3896 (1998).
Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552â556 (2003).
Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B. & Massey, J.T. Mental rotation of the neuronal population vector. Science 243, 234â236 (1989).
Wilson, M.A. & McNaughton, B.L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055â1058 (1993).
Douglas, R.J. & Martin, K.A. Opening the grey box. Trends Neurosci. 14, 286â293 (1991).
Hubel, D.H. Tungsten microelectrodes for recording single units. Science 125, 549â550 (1957).
Carmena, J.M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, 193â208 (2004).
Donoghue, J.P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5 (Suppl.), 1085â1088 (2002).
Rousche, P.J. & Normann, R.A. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82, 1â15 (1998).
Hampson, R.E., Simeral, J.D. & Deadwyler, S.A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610â614 (1999).
Hoffman, K.L. & McNaughton, B.L. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297, 2070â2073 (2002).
Chapin, J.K. Using multi-neuron population recordings for neural prosthetics. Nat. Neurosci. 7, 452â455 (2004).
Churchland, P.S. & Sejnowski, T.J. The Computational Brain (MIT Press, Cambridge, 1992).
McNaughton, B.L., O'Keefe, J. & Barnes, C.A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391â397 (1983).
Gray, C.M., Maldonado, P.E., Wilson, M. & McNaughton, B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63, 43â54 (1995).
Henze, D.A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390â400 (2000).
Jog, M.S. et al. Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117, 141â152 (2002).
Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551, 139â153 (2003).
Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274â287 (1999).
Wise, K.D. & Najafi, K. Microfabrication techniques for integrated sensors and microsystems. Science 254, 1335â1342 (1991).
Norlin, P., Kindlundh, M., Mouroux, A., Yoshida, K. & Hofmann, U.G. A 32-site neuronal probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12, 414â419 (2002).
Wise, K.D. Micromachined Interfaces to the cellular world. Sensors Materials 10, 385â395 (1998).
Buzsáki, G. & Kandel, A. Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79, 1587â1591 (1998).
Csicsvari, J. et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314â1323 (2003).
Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. (in press).
Llinás, R.R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654â1664 (1988).
Stuart, G., Spruston, N., Sakmann, B. & Hausser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125â131 (1997).
Holt, G.R. & Koch, C. Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci. 6, 169â184 (1999).
Quirk, M.C., Blum, K.I. & Wilson, M.A. Experience-dependent changes in extracellular spike amplitude may reflect regulation of dendritic action potential back-propagation in rat hippocampal pyramidal cells. J. Neurosci. 21, 240â248 (2001).
Buzsáki, G., Penttonen, M., Nadasdy, Z. & Bragin, A. Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl. Acad. Sci. USA 93, 9921â9925 (1996).
Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141â149 (2001).
Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401â414 (2000).
Takahashi, S., Anzai, Y. & Sakurai, Y. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. J. Neurophysiol. 89, 2245â2258 (2003).
Fee, M.S., Mitra, P.P. & Kleinfeld, D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175â188 (1996).
Quirk, M.C. & Wilson, M.A. Interaction between spike waveform classification and temporal sequence detection. J. Neurosci. Methods 94, 41â52 (1999).
Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844â848 (2003).
Swadlow, H.A. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb. Cortex 13, 25â32 (2003).
Csicsvari, J., Hirase, H., Czurko, A. & Buzsáki, G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21, 179â189 (1998).
Somogyi, P., Tamas, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113â135 (1998).
Monyer, H. & Markram, H. Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90â97 (2004).
Kawaguchi, Y. & Kubota, Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387â396 (1993).
Buzsáki, G., Traub, R.D. & Pedley, T. The cellular synaptic generation of EEG. in Current Practice of Clinical Encephalography Edn. 3 (eds. Ebersole, J.S. & Pedley, T.A.) 1â11 (Lippincott Williams & Wilkins, Philadelphia, 2003).
Deadwyler, S.A. & Hampson, R.E. Ensemble activity and behavior: what's the code? Science 270, 1316â1318, 1995.
Eichenbaum, H. & Davis, J.L. Neuronal Ensembles: Strategies for Recording and Coding (Wiley-Liss, New York, 1988).
Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025â1027 (1992).
Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497â9507 (1999).
Louie, K. & Wilson, M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29, 145â156 (2001).
Lee, A.K. & Wilson, M.A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183â1194 (2002).
Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory (John Wiley & Sons, New York, 1949).
Gray, C.M., Konig, P., Engel, A.K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334â337 (1989).
deCharms, R.C. & Zador, A. Neural representation and the cortical code. Annu. Rev. Neurosci. 23, 613â647 (2000).
Hampson, R.E., Simeral, J.D. & Deadwyler, S.A. What ensemble recordings reveal about functional hippocampal cell encoding. Prog. Brain Res. 130, 345â357 (2001).
Nicolelis, M.A.L., Lin, C.-S., Woodward, D.J. & Chapin, J.K. Peripheral block of ascending cutaneous information induces immediate spatio-temporal changes in thalamic networks. Nature 361, 533â536 (1993).
Olsson III, R.H., Buhl, D.L., Gulari, M.N., Buzsaki, G. & Wise, K.D. A silicon microelectrode array for simultaneous recording and stimulation in the hippocampus of free moving rats and mice. IEEE Eng. Med. Biol. Mag. 22, 1968â1671, 2003.
Taylor, D.M., Tillery, S.I. & Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829â1832 (2002).
Shoham, S., Fellows, M.R. & Normann, R.A. Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods 127, 111â122 (2003).
Musial, P.G., Baker, S.N., Gerstein, G.L., King, E.A. & Keating, J.G. Signal-to-noise ratio improvement in multiple electrode recording. J. Neurosci. Methods 115, 29â43 (2002).
Pouzat, C., Mazor, O. & Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122, 43â57 (2002).
Quian Quiroga, R., Nádasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and super-paramagnetic clustering. Neural Comput. (in press).
Lewicki, M. A review of methods for spike sorting: the detection and classification of neural action potentials. Network Comput. Neural Syst. 9, R53âR78 (1998).
Letelier, J.C. & Weber, P.P. Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods 101, 93â106 (2000).
Brown, E.N., Kass, R.E. & Mitra, P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456â461 (2004).
Acknowledgements
I thank D.L. Buhl, J. Csicsvari, K.D., Harris, D.A. Henze, H. Hirase, J. Hetke, B. Jamieson, S. Montgomery, R. Olsson, A. Sirota and K.D. Wise for support and collaboration. Supported by National Institutes of Health (NS34994, NS43157; MH54671 and 1P41RR09754).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Buzsáki, G. Large-scale recording of neuronal ensembles. Nat Neurosci 7, 446â451 (2004). https://doi.org/10.1038/nn1233
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn1233