Abstract
In disordered media, quantum interference effects are expected to induce complete suppression of electron conduction. The phenomenon, known as Anderson localization, has a counterpart with classical waves that has been observed in acoustics, electromagnetism and optics, but a direct observation for particles remains elusive. Here, we report the observation of the three-dimensional localization of ultracold atoms in a disordered potential created by a speckle laser field. A phenomenological analysis of our data distinguishes a localized component of the resulting density profile from a diffusive component. The observed localization cannot be interpreted as the classical trapping of particles with energy below the classical percolation threshold in the disorder, nor can it be understood as quantum trapping in local potential minima. Instead, our data are compatible with the self-consistent theory of Anderson localization tailored to our system, involving a heuristic energy shift that offers scope for future interpretation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492â1505 (1958).
Lagendijk, A., Van Tiggelen, B. A. & Wiersma, D. Fifty years of Anderson localization. Phys. Today 62, 24â29 (August 2009).
Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673â676 (1979).
Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287â337 (1985).
Van Tiggelen, B. A. in Mathematical and Physical Sciences Vol. 531 (ed. Fouque, J.) 1â60 (Nato Advanced Science Institutes Series, Series C, Addison Wesley, 1999).
Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671â673 (1997).
Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52â55 (2007).
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Dalichaouch, R., Armstrong, J. P., Schultz, S., Platzman, P. M. & McCall, S. L. Microwave localization by 2-dimensional random scattering. Nature 354, 53â55 (1991).
Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850â853 (2000).
Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & Van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 845â848 (2008).
Damski, B., Zakrzewski, J., Santos, L., Zoller, P. & Lewenstein, M. Atomic Bose and Anderson glasses in optical lattices. Phys. Rev. Lett. 91, 080403 (2003).
Roth, R. & Burnett, K. Phase diagram of bosonic atoms in two-color superlattices. Phys. Rev. A 68, 023604 (2003).
Sanchez-Palencia, L. et al. Anderson localization of expanding BoseâEinstein condensates in random potentials. Phys. Rev. Lett. 98, 210401 (2007).
Piraud, M., Lugan, P., Bouyer, P., Aspect, A. & Sanchez-Palencia, L. Localization of a matter wave packet in a disordered potential. Phys. Rev. A 83, 031603 (2011).
Kuhn, R. C., Sigwarth, O., Miniatura, C., Delande, D. & Müller, C. A. Coherent matter wave transport in speckle potentials. New J. Phys. 9, 161 (2007).
Skipetrov, S. E., Minguzzi, A., Van Tiggelen, B. A. & Shapiro, B. Anderson localization of a BoseâEinstein condensate in a 3D random potential. Phys. Rev. Lett. 100, 165301 (2008).
Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891â894 (2008).
Roati, G. et al. Anderson localization of a non-interacting BoseâEinstein condensate. Nature 453, 895â898 (2008).
Robert-de-Saint-Vincent, M. et al. Anisotropic 2D diffusive expansion of ultracold atoms in a disordered potential. Phys. Rev. Lett. 104, 220602 (2010).
Pezzé, L. et al. Regimes of classical transport of cold gases in a two-dimensional anisotropic disorder. New J. Phys. 13, 095015 (2011).
Aspect, A. & Inguscio, M. Anderson localization of ultracold atoms. Phys. Today 62, 30â35 (August 2009).
Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87â95 (2010).
Moore, F. L., Robinson, J. C., Bharucha, C., Williams, P. E. & Raizen, M. G. Observation of dynamical localization in atomic momentum transfer: A new testing ground for quantum chaos. Phys. Rev. Lett. 73, 2974â2977 (1994).
Chabé, J. et al. Experimental observation of the Anderson metalâinsulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008).
Vollhardt, D. & Wölfle, P. in Electronic Phase Transitions (eds Hanke, W. & Kopalev, Y.) 1 (Elsevier, 1992).
Clément, D. et al. Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle. New J. Phys. 8, 165 (2006).
Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
Wölfle, P. & Bhatt, R. N. Electron localization in anisotropic systems. Phys. Rev. B 30, 3542â3544 (1984).
Piraud, M., Pezzé, L. & Sanchez-Palencia, L. Matter wave transport and Anderson localization in anisotropic 3D disorder. Preprint at http://arxiv.org/abs/1112.2859v1 (2011).
Ioffe, A. F. & Regel, A. R. Non crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237â291 (1960).
Yedjour, A. & Van Tiggelen, B. A. Diffusion and localization of cold atoms in 3D optical speckle. Eur. Phys. J. D 59, 249â255 (2010).
Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization of ultracold fermionic matter. Science 333, 66â68 (2011).
Acknowledgements
We thank S. Seidel and V. Volchkov for experimental contributions, M. Besbes for assistance on numerical calculations, M. Lecrivain for helping design and realize the suspending coils, A. Villing and F. Moron for assistance with the electronics, and T. Giamarchi and B. van Tiggelen for fruitful discussions. This research was supported by the European Research Council (Starting grant âALoGlaDisâ, FP7/2007-2013 Grant Agreement No. 256294, and Advanced grant âQuantatopâ), the Agence Nationale de la Recherche (ANR-08-blan-0016-01), the Ministère de lâEnseignement Supérieur et de la Recherche, the Délégation Générale de lâArmement, the Triangle de la Physique and the Institut Francilien de Recherche sur les Atomes Froids. We acknowledge the use of the computing facility cluster Grappe massivement parallèle de calcul scientifique of the LUmiere MATière research federation (Fédération de Recherche LUmiere MATière 2764).
Author information
Authors and Affiliations
Contributions
All authors have contributed equally.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Jendrzejewski, F., Bernard, A., Müller, K. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Phys 8, 398â403 (2012). https://doi.org/10.1038/nphys2256
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2256
This article is cited by
-
Anomalous correlation-induced dynamical phase transitions
Scientific Reports (2023)
-
Anderson localization of electromagnetic waves in three dimensions
Nature Physics (2023)
-
Efficient dispersion modeling in optical multimode fiber
Light: Science & Applications (2023)
-
Engineering random spin models with atoms in a high-finesse cavity
Nature Physics (2023)
-
Observation of a transition to a localized ultrasonic phase in soft matter
Communications Physics (2022)