Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Information transfer and behavioural inertia in starling flocks

Abstract

Collective decision-making in biological systems requires all individuals in the group to go through a behavioural change of state. During this transition fast and robust transfer of information is essential to prevent cohesion loss. The mechanism by which natural groups achieve such robustness, however, is not clear. Here we present an experimental study of starling flocks performing collective turns. We find that information about direction changes propagates across the flock with a linear dispersion law and negligible attenuation, hence minimizing group decoherence. These results contrast starkly with present models of collective motion, which predict diffusive transport of information. Building on spontaneous symmetry breaking and conservation-law arguments, we formulate a theory that correctly reproduces linear and undamped propagation. Essential to this framework is the inclusion of the birds’ behavioural inertia. The theory not only explains the data, but also predicts that information transfer must be faster the stronger the group’s orientational order, a prediction accurately verified by the data. Our results suggest that swift decision-making may be the adaptive drive for the strong behavioural polarization observed in many living groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Birds’ trajectories and turning delays.
Figure 2: Propagation of the turn across the flock.
Figure 3: Prediction of the new theory.

Similar content being viewed by others

References

  1. Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).

    Article  Google Scholar 

  2. Conradt, L. & List, C. Group decisions in humans and animals: A survey. Phil. Trans. R. Soc. B 364, 719–742 (2009).

    Article  Google Scholar 

  3. Parrish, J. K. & Hamner, W. H. (eds) Animal Groups in Three Dimensions (Cambridge Univ. Press, 1997).

  4. Krause, J. & Ruxton, G. D. Living in Groups (Oxford Univ. Press, 2002).

    Google Scholar 

  5. Couzin, I. D. & Krause, J. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003).

    Article  Google Scholar 

  6. Sumpter, D., Buhl, J., Biro, D. & Couzin, I. Information transfer in moving animal groups. Theory Biosci. 127, 177–186 (2008).

    Article  Google Scholar 

  7. Bajec, I. L. & Heppner, F. H. Organized flight in birds. Anim. Behav. 78, 777–789 (2009).

    Article  Google Scholar 

  8. Nagy, M., Akos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–894 (2010).

    Article  ADS  Google Scholar 

  9. Pomeroy, H. & Heppner, F. Structure of turning in airborne Rock Dove (Columba livia) flocks. Auk 109, 256–267 (1992).

    Article  Google Scholar 

  10. Cavagna, A. et al. The STARFLAG handbook on collective animal behaviour: 1. Empirical methods. Anim. Behav. 76, 217–236 (2008).

    Article  Google Scholar 

  11. Radakov, D. V. Schooling and Ecology of Fish (John Wiley, 1973).

    Google Scholar 

  12. Toner, J. & Tu, Y. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  13. Huth, A. & Wissel, C. The simulation of the movement of fish schools. J. Theor. Biol. 156, 365–385 (1992).

    Article  Google Scholar 

  14. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).

    Article  MathSciNet  Google Scholar 

  16. Grégoire, G. & Chaté, H. Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004).

    Article  ADS  Google Scholar 

  17. Bialek, W. et al. Statistical mechanics for natural flocks of birds. Proc. Natl Acad. Sci. USA 109, 4786–4791 (2012).

    Article  ADS  Google Scholar 

  18. Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).

    Article  ADS  Google Scholar 

  19. Ginelli, F. & Chaté, H. Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett. 105, 168103 (2010).

    Article  ADS  Google Scholar 

  20. Ryder, L. H. Quantum Field Theory (Cambridge Univ. Press, 1985).

    MATH  Google Scholar 

  21. Halperin, B. I. & Hohenberg, P. C. Hydrodynamic theory of spin waves. Phys. Rev. 188, 898–918 (1969).

    Article  ADS  Google Scholar 

  22. Ballerini, M. et al. Empirical investigation of starling flocks: A benchmark study in collective animal behaviour. Anim. Behav. 76, 201–215 (2008).

    Article  Google Scholar 

  23. Nambu, Y. Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 64–663 (1960).

    Article  ADS  Google Scholar 

  24. Goldstone, J. Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961).

    Article  MathSciNet  Google Scholar 

  25. Cavagna, A et al. Scale-free correlations in starling flocks. Proc. Natl Acad. Sci. USA 107, 11865–11870 (2010).

    Article  ADS  Google Scholar 

  26. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    Article  ADS  Google Scholar 

  27. Matsubara, T. & Matsuda, H. A lattice model of liquid helium, I. Prog. Theor. Phys. 16, 569–582 (1956).

    Article  ADS  Google Scholar 

  28. Sonin, E. B. Spin currents and spin superfluidity. Adv. Phys. 59, 181–255 (2010).

    Article  ADS  Google Scholar 

  29. Justh, E. W. & Krishnaprasad, P. S. Equilibria and steering laws for planar formations. Syst. Control Lett. 52, 25–38 (2004).

    Article  MathSciNet  Google Scholar 

  30. Szabo, P., Nagy, M. & Vicsek, T. Transitions in a self-propelled-particles model with coupling of accelerations. Phys. Rev. E 79, 021908 (2009).

    Article  ADS  Google Scholar 

  31. Hemelrijk, C. K. & Hildenbrandt, H. Some causes of the variable shape of flocks of birds. PLoS ONE 6, e22479 (2011).

    Article  ADS  Google Scholar 

  32. Gautrais, J. et al. Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8, e1002678 (2012).

    Article  MathSciNet  Google Scholar 

  33. Simha, R. A. & Ramaswamy, S. Hydrodynamics fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).

    Article  ADS  Google Scholar 

  34. Hartley, R. & Zisserman, A. Multiple View Geometry in Computer Vision (Cambridge Univ. Press, 2003).

    MATH  Google Scholar 

  35. Attanasi, A. et al. Tracking in three dimensions via recursive multi-path branching. Preprint at http://arxiv.org/abs/1305.1495 (2013).

  36. CPLEX Optimization Incorporated, Using the CPLEX Callable Library (Incline Village, 1994).

    Google Scholar 

  37. Conner, G. R. & Christopher, P. G. An extension of Zermelo’s model for ranking by paired comparisons. Eur. J. Appl. Math. 11, 225–247 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank J.G. Lorenzana for bringing Model F to our attention. We thank E. Cappelluti, C. Castellani, G.A. Cavagna, M. Cencini, F. Cecconi, F. Ginelli, S. Ramaswamy and J. Toner for discussions, and P. Calabrese and D. Levine for reading the manuscript. We also acknowledge the advice of C. Lucibello on tracking and the help of E. Silvestri on segmentation and on testing our tracking algorithm against synthetic data. This work was supported by grants IIT–Seed Artswarm, ERC–StG no. 257126 and US-AFOSR FA95501010250 (through the University of Maryland).

Author information

Authors and Affiliations

Authors

Contributions

A.C. and I.G. designed the study. A.C. coordinated the experiment. A.A., A.C., I.G., S.M., L.P., E.S. and M.V. set up and calibrated the 3D system. L.D.C., S.M., O.P. and E.S. performed the experiment. A.A., A.C., L.P. and M.V. developed the tracking method. A.A., S.M., L.D.C., E.S. and M.V. tested the tracking method and produced the 3D data. A.J. analysed the data. A.C., I.G., T.S.G. and A.J. formulated the theory. A.C. wrote the paper.

Corresponding authors

Correspondence to Andrea Cavagna or Asja Jelić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1134 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 1632 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 4728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attanasi, A., Cavagna, A., Del Castello, L. et al. Information transfer and behavioural inertia in starling flocks. Nature Phys 10, 691–696 (2014). https://doi.org/10.1038/nphys3035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing