Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glial inhibition of CNS axon regeneration

Key Points

  • Damage to the adult CNS leads to persistent deficits owing to the inability of CNS axons to regenerate after injury. This regeneration failure is attributable to the reduced intrinsic growth ability of mature neurons and extrinsic inhibitory influences from the glial environment, such as inhibitory molecules in CNS myelin and chondroitin sulphate proteoglycans (CSPGs) from the glial scar.

  • Many myelin-associated inhibitors have been identified using in vitro assays, including Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp). Repulsive guidance cues that are important during development, such as ephrin B3 and semaphorin 4D, might also persist in the adult and limit axon growth.

  • CSPGs expressed by reactive astrocytes can inhibit axon regeneration through their protein core or glycosaminoglycan moieties. Although both CNS myelin and CSPGs are likely to contribute to regeneration failure, their relative importance remains uncertain.

  • Although receptor mechanisms for CSPGs are not known, most myelin inhibitors signal through a common receptor complex that consists of the Nogo-66 receptor (NgR) and its co-receptors p75 or TROY and LINGO1. Recent evidence from genetic deletion studies, however, suggests that there are also NgR-independent signalling pathways.

  • Common intracellular mechanisms probably mediate both CNS myelin and CSPG-based inhibition. The best-characterized pathway involves the small GTPase RhoA and its effector Rho-associated kinase (ROCK), which can regulate the actin cytoskeleton. Calcium-related signals, including protein kinase C and epidermal growth factor (EGFR), might also be involved in these inhibitory pathways.

  • Many in vivo studies have targeted these inhibitory ligands, receptors and downstream components to promote regeneration after spinal cord injury. Whereas some pharmacological and dominant-negative approaches have shown promise, most knockout studies have met with limited success. These results demonstrate the complexity and cross-compensation between the different inhibitory influences, and the potential existence of as yet unidentified mechanisms.

  • Recent reports are revealing intriguing parallels between the mechanisms that prevent axon repair after CNS injury, and those that limit experience-dependent plasticity. Even in the absence of long-distance axon regeneration, recovery from CNS injuries might benefit from local sprouting and structural plasticity similar to the way in which sensory experience fine-tunes neural circuits during the critical period.

  • Alleviating glial inhibition might not only promote the regrowth of damaged axons, but might also enhance recovery through local compensatory sprouting. Combinatorial approaches that target multiple inhibitory pathways and promote the intrinsic growth ability of neurons might be necessary to achieve significant long-distance regeneration.

Abstract

Damage to the adult CNS often leads to persistent deficits due to the inability of mature axons to regenerate after injury. Mounting evidence suggests that the glial environment of the adult CNS, which includes inhibitory molecules in CNS myelin as well as proteoglycans associated with astroglial scarring, might present a major hurdle for successful axon regeneration. Here, we evaluate the molecular basis of these inhibitory influences and their contributions to the limitation of long-distance axon repair and other types of structural plasticity. Greater insight into glial inhibition is crucial for developing therapies to promote functional recovery after neural injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the CNS injury site.
Figure 2: Glial inhibitors and intracellular signalling mechanisms.
Figure 3: Changes in CNS environments after maturation and injury.

Similar content being viewed by others

References

  1. Zito, K. & Svoboda, K. Activity-dependent synaptogenesis in the adult mammalian cortex. Neuron 35, 1015–1017 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zuo, Y., Yang, G., Kwon, E. & Gan, W. B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Edgerton, V. R., Tillakaratne, N. J., Bigbee, A. J., de Leon, R. D. & Roy, R. R. Plasticity of the spinal neural circuitry after injury. Annu. Rev. Neurosci. 27, 145–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Ramón y Cajal, S. Degeneration and Regeneration of the Nervous System, (Oxford Univ. Press, London, 1928).

    Google Scholar 

  5. Tom, V. J., Steinmetz, M. P., Miller, J. H., Doller, C. M. & Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539 (2004). An interesting study analysing the morphological changes that constitute the dystrophic growth cones of lesioned axons in the hostile CNS environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system 'bridges' after central nervous system injury in adult rats. Science 214, 931–933 (1981). A seminal paper that attributes axon regeneration failure to the non-permissive CNS environment by showing that some lesioned axons can regrow through a transplanted peripheral nerve graft.

    Article  CAS  PubMed  Google Scholar 

  7. Filbin, M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Rev. Neurosci. 4, 703–713 (2003).

    Article  CAS  Google Scholar 

  8. He, Z. & Koprivica, V. The Nogo signaling pathway for regeneration block. Annu. Rev. Neurosci. 27, 341–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Yiu, G. & He, Z. Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr. Opin. Neurobiol. 13, 545–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  Google Scholar 

  11. Schwab, M. E. & Thoenen, H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5, 2415–2423 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caroni, P. & Schwab, M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Schnell, L. & Schwab, M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Prinjha, R. et al. Inhibitor of neurite outgrowth in humans. Nature 403, 383–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Huber, A. B., Weinmann, O., Brosamle, C., Oertle, T. & Schwab, M. E. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oertle, T. et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. 23, 5393–5406 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fournier, A. E., GrandPre, T. & Strittmatter, S. M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Trajkovic, K. et al. Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J. Cell Biol. 172, 937–948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, K. C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Moreau-Fauvarque, C. et al. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J. Neurosci. 23, 9229–9239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benson, M. D. et al. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl Acad. Sci. USA 102, 10694–10699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai, C., Watson, J. B., Bloom, F. E., Sutcliffe, J. G. & Milner, R. J. Neural protein 1B236/myelin-associated glycoprotein (MAG) defines a subgroup of the immunoglobulin superfamily. Immunol. Rev. 100, 129–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Salzer, J. L., Holmes, W. P. & Colman, D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J. Cell Biol. 104, 957–965 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Tang, S., Qiu, J., Nikulina, E. & Filbin, M. T. Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol. Cell. Neurosci. 18, 259–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Schachner, M. & Bartsch, U. Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29, 154–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, P. W. et al. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron 3, 377–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. DeBellard, M. E., Tang, S., Mukhopadhyay, G., Shen, Y. J. & Filbin, M. T. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 7, 89–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Turnley, A. M. & Bartlett, P. F. MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons. Neuroreport 9, 1987–1990 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Mikol, D. D., Gulcher, J. R. & Stefansson, K. The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate. J. Cell Biol. 110, 471–479 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, J. K. et al. Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310, 1813–1817 (2005). A unique study that provides a spatial explanation for how the myelin-associated inhibitor OMgp can limit collateral sprouting at nodes of Ranvier.

    Article  CAS  PubMed  Google Scholar 

  36. Kullander, K. et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 15, 877–888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, J. E., Li, S., GrandPre, T., Qiu, D. & Strittmatter, S. M. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38, 187–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Simonen, M. et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38, 201–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, B. et al. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38, 213–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rudge, J. S. & Silver, J. Inhibition of neurite outgrowth on astroglial scars in vitro. J. Neurosci. 10, 3594–3603 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morgenstern, D. A., Asher, R. A. & Fawcett, J. W. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137, 313–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Snow, D. M., Steindler, D. A. & Silver, J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev. Biol. 138, 359–376 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Pindzola, R. R., Doller, C. & Silver, J. Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions. Dev. Biol. 156, 34–48 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Carulli, D., Laabs, T., Geller, H. M. & Fawcett, J. W. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr. Opin. Neurobiol. 15, 116–120 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. Ughrin, Y. M., Chen, Z. J. & Levine, J. M. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J. Neurosci. 23, 175–186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bovolenta, P. & Fernaud-Espinosa, I. Nervous system proteoglycans as modulators of neurite outgrowth. Prog. Neurobiol. 61, 113–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Cole, G. J., Loewy, A. & Glaser, L. Neuronal cell–cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 320, 445–447 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Grumet, M., Flaccus, A. & Margolis, R. U. Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J. Cell Biol. 120, 815–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Friedlander, D. R. et al. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J. Cell Biol. 125, 669–680 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. McKeon, R. J., Hoke, A. & Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136, 32–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Z. et al. NG2 glial cells provide a favorable substrate for growing axons. J. Neurosci. 26, 3829–3839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dou, C. L. & Levine, J. M. Identification of a neuronal cell surface receptor for a growth inhibitory chondroitin sulfate proteoglycan (NG2). J. Neurochem. 68, 1021–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Monnier, P. P., Sierra, A., Schwab, J. M., Henke-Fahle, S. & Mueller, B. K. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell. Neurosci. 22, 319–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Ramer, M. S., Duraisingam, I., Priestley, J. V. & McMahon, S. B. Two-tiered inhibition of axon regeneration at the dorsal root entry zone. J. Neurosci. 21, 2651–2660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang, X., Davies, J. E. & Davies, S. J. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J. Neurosci. Res. 71, 427–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Kantor, D. B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Domeniconi, M. et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–990 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, B. P., Fournier, A., GrandPre, T. & Strittmatter, S. M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R. & He, Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Wong, S. T. et al. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neurosci. 5, 1302–1308 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Domeniconi, M. et al. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46, 849–855 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Park, J. B. et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45, 345–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Shao, Z. et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45, 353–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Mi, S. et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neurosci. 7, 221–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Fischer, D., He, Z. & Benowitz, L. I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, J. E., Liu, B. P., Park, J. H. & Strittmatter, S. M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44, 439–451 (2004). A critical paper demonstrating that NgR-deficient mice show enhanced regeneration from raphespinal and rubrospinal tract fibres, but not CST fibres, suggesting that the contribution by NgR to regeneration failure might be different in different nerve fibre tracts.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, B. et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl Acad. Sci. USA 102, 1205–1210 (2005). An important study showing that genetic deletion of NgR cannot overcome myelin inhibition or promote CST regeneration, supporting the presence of NgR-independent mechanisms mediating myelin inhibition and regeneration failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lauren, J., Airaksinen, M. S., Saarma, M. & Timmusk, T. Two novel mammalian Nogo receptor homologs differentially expressed in the central and peripheral nervous systems. Mol. Cell. Neurosci. 24, 581–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Pignot, V. et al. Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J. Neurochem. 85, 717–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Barton, W. A. et al. Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. 22, 3291–3302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Venkatesh, K. et al. The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J. Neurosci. 25, 808–822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Niederost, B., Oertle, T., Fritsche, J., McKinney, R. A. & Bandtlow, C. E. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. 22, 10368–10376 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vinson, M. et al. Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J. Biol. Chem. 276, 20280–20285 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Vyas, A. A., Blixt, O., Paulson, J. C. & Schnaar, R. L. Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro. J. Biol. Chem. 280, 16305–16310 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Winton, M. J., Dubreuil, C. I., Lasko, D., Leclerc, N. & McKerracher, L. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J. Biol. Chem. 277, 32820–32829 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neurosci. 6, 461–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fournier, A. E., Takizawa, B. T. & Strittmatter, S. M. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. 23, 1416–1423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hsieh, S. H., Ferraro, G. B. & Fournier, A. E. Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J. Neurosci. 26, 1006–1015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sivasankaran, R. et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nature Neurosci. 7, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Hasegawa, Y. et al. Promotion of axon regeneration by myelin-associated glycoprotein and Nogo through divergent signals downstream of Gi/G. J. Neurosci. 24, 6826–6832 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E. & Kater, S. B. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259, 80–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Snow, D. M., Atkinson, P. B., Hassinger, T. D., Letourneau, P. C. & Kater, S. B. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Dev. Biol. 166, 87–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Brosamle, C., Huber, A. B., Fiedler, M., Skerra, A. & Schwab, M. E. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J. Neurosci. 20, 8061–8068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bartsch, U. et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15, 1375–1381 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. GrandPre, T., Li, S. & Strittmatter, S. M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Li, S. & Strittmatter, S. M. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J. Neurosci. 23, 4219–4227 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, S., Kim, J. E., Budel, S., Hampton, T. G. & Strittmatter, S. M. Transgenic inhibition of Nogo-66 receptor function allows axonal sprouting and improved locomotion after spinal injury. Mol. Cell. Neurosci. 29, 26–39 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, S. et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J. Neurosci. 24, 10511–10520 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walsh, G. S., Krol, K. M., Crutcher, K. A. & Kawaja, M. D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 19, 4155–4168 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hannila, S. S. & Kawaja, M. D. Nerve growth factor-induced growth of sympathetic axons into the optic tract of mature mice is enhanced by an absence of p75NTR expression. J. Neurobiol. 39, 51–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Song, X. Y., Zhong, J. H., Wang, X. & Zhou, X. F. Suppression of p75NTR does not promote regeneration of injured spinal cord in mice. J. Neurosci. 24, 542–546 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Menet, V., Prieto, M., Privat, A. & Gimenez y Ribotta, M. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl Acad. Sci. USA 100, 8999–9004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002). A pioneering study describing the use of ChABC to neutralize glial scar-based inhibition as a therapeutic means to promote recovery after CNS injury. This paper spawned many subsequent studies using similar techniques in other injury paradigms.

    Article  CAS  PubMed  Google Scholar 

  105. Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci. 4, 465–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Goldshmit, Y., Galea, M. P., Wise, G., Bartlett, P. F. & Turnley, A. M. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 24, 10064–10073 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Steward, O., Zheng, B. & Tessier-Lavigne, M. False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J. Comp. Neurol. 459, 1–8 (2003).

    Article  PubMed  Google Scholar 

  108. Lee, J. K., Kim, J. E., Sivula, M. & Strittmatter, S. M. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci. 24, 6209–6217 (2004). An interesting paper describing the potential application of blocking inhibitory influences to promote local sprouting and plasticity to enhance stroke recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Papadopoulos, C. M. et al. Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb. Cortex 16, 529–536 (2006).

    Article  PubMed  Google Scholar 

  110. Markus, T. M. et al. Recovery and brain reorganization after stroke in adult and aged rats. Ann. Neurol. 58, 950–953 (2005).

    Article  PubMed  Google Scholar 

  111. Seymour, A. B. et al. Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J. Cereb. Blood Flow Metab. 25, 1366–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Oudega, M. & Hagg, T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp. Neurol. 140, 218–229 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Oudega, M. & Hagg, T. Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Res. 818, 431–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L. I. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615–4626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Steinmetz, M. P. et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J. Neurosci. 25, 8066–8076 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  PubMed  Google Scholar 

  118. Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002). The first report describing the involvement of CSPGs in forming a perineuronal net that limits experience-driven plasticity in the adult.

    Article  CAS  PubMed  Google Scholar 

  119. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005). Another important paper that further demonstrates the parallels between CNS myelin and CSPGs. It shows that myelin-associated inhibitors, such as CSPGs, are also involved in critical period closure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tropea, D., Caleo, M. & Maffei, L. Synergistic effects of brain-derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats. J. Neurosci. 23, 7034–7044 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Massey, J. M. et al. Chondroitinase ABC digestion of the perineur onal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J. Neurosci. 26, 4406–4414 (2006). A study demonstrating that removal of CSPG inhibition also promotes functional collateral sprouting after injury, providing a potential mechanistic link between structural remodelling and functional plasticity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bareyre, F. M., Kerschensteiner, M., Misgeld, T. & Sanes, J. R. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nature Med. 11, 1355–1360 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W. & Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nature Med. 11, 572–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Lichtman, J. W. & Sanes, J. R. Watching the neuromuscular junction. J. Neurocytol. 32, 767–775 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Muller, C. M. & Best, J. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342, 427–430 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Ferretti, P., Zhang, F. & O'Neill, P. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev. Dyn. 226, 245–256 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Hou for critical reading of this manuscript. Our work is supported by grants from the National Institute of Neurological Disorders and Stroke (NINDS), the McKnight foundation and the US National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Dystrophic growth cones

Unusually shaped nerve terminals that are characterized by small globular clusters or multivesicular sacs found on the distal ends of regenerating axons in a glial scar environment.

Dorsal root ganglia

(DRG). Ganglia that are found beside the spinal cord in which the cell bodies of sensory neurons are located. The bipolar neurons send a central axon through the spinal cord and another process to the PNS.

Oligodendrocytes

Glial cells that elaborate myelin in the CNS. Unlike Schwann cells in the PNS that myelinate single axons, oligodendrocytes typically ensheath several processes at once.

Astrocytes

The most abundant glial cell in the CNS, with a star-shaped cell body and broad end-feet on their processes. Astrocytes are thought to have nutritive functions, as well as roles in maintaining the blood–brain barrier and extracellular milieu.

Glial scar

A physical and molecular barrier to regeneration that develops at CNS lesion sites, consisting primarily of reactive astrocytes, along with extracellular matrix molecules such as CSPGs.

Growth cone

A motile actin-supported extension of a developing axon that can respond to external cues to guide its movement. Exposure to some repulsive guidance cues and many myelin-associated inhibitors leads to the collapse of this broad-shaped structure.

Alternative splicing

A post-transcriptional process through which a pre-mRNA molecule, containing several introns and exons, can lead to different functional mRNA molecules, and consequently proteins, that originate from a single gene.

GPI-anchor

A glycosylphosphatidylinositol (GPI) linkage, located at the carboxy termini of proteins without hydrophobic transmembrane regions, that can insert into the cell membrane. They might be released from the membrane by treatment with phospholipase C.

Corticospinal tract

(CST). Axon fibres that originate from pyramidal neurons in layer 5 of the cerebral cortex and synapse on motor and interneurons in the spinal cord. This tract mediates motor functions and is commonly used for CNS injury models.

Dorsal root entry zone

(DREZ). The interface between the CNS and PNS where sensory afferents from dorsal root ganglia enter the spinal cord during development.

Penumbra

The area of secondary injury surrounding a CNS lesion epicentre.

Dorsal rhizotomy

A transection of sensory nerve fibres in the dorsal root at its point of entry into the spinal cord.

Rho-guanine dissociation inhibitor

(Rho-GDI). An inhibitory regulator of the Rho small G-protein family that can bind to RhoA and maintain it in an inactive state.

Dorsal columns

Axon fibres that consist of the central processes of medium-diameter sensory dorsal root ganglia neurons that project up to dorsal column nuclei in the medulla.

Raphespinal tract

Serotonin-containing fibres originating from caudal raphe nuclei in the brainstem to modulate sensory inputs such as pain.

Rubrospinal tract

Axon fibres that are functionally related to corticospinal tracts, that originate from the caudal red nucleus and terminate on motor neurons in the spinal cord.

Preconditioning injury

A lesion of the peripheral branch of bipolar sensory neurons in dorsal root ganglia that can promote the subsequent regeneration of their central axons in the spinal cord after nerve transection at a later time point.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiu, G., He, Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627 (2006). https://doi.org/10.1038/nrn1956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing