Key Points
-
Unregulated microglial activation is a contributing mechanism of neuronal damage in neurodegenerative diseases.
-
Microglia continuously monitor the brain environment and are activated in response to diverse cues, including both endogenous proteins and externally derived environmental toxins.
-
Recent studies show that NADPH oxidase is a common mechanism of microglia-mediated neurotoxicity and is the primary source of microglia-derived extracellular reactive oxygen species (ROS) for numerous neurotoxic stimuli.
-
Pattern recognition receptors are a predominant mechanism through which microglia transduce diverse toxin signals into the production of ROS, identifying a common pathway of microglia-mediated neurotoxicity.
-
By using in vivo imaging to identify deleterious microglial activation combined with targeted anti-inflammatory therapy to inhibit the common neurotoxic mechanisms of microglial activation, it might be possible to slow or halt the progression of neurodegenerative disease.
Abstract
Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zecca, L., Zucca, F. A., Albertini, A., Rizzio, E. & Fariello, R. G. A proposed dual role of neuromelanin in the pathogenesis of Parkinson's disease. Neurology 67, S8âS11 (2006).
McGeer, P. L., Rogers, J. & McGeer, E. G. Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J. Alzheimers Dis. 9, 271â276 (2006).
Kim, Y. S. & Joh, T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp. Mol. Med. 38, 333â347 (2006).
del Rio-Hortega, P. Cytology and Cellular Pathology of the Nervous System (ed. Hocker, P. P.) (Penfeild Wed, New York, 1932).
Mittelbronn, M., Dietz, K., Schluesener, H. J. & Meyermann, R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. (Berl) 101, 249â255 (2001).
Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151â170 (1990).
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314â1318 (2005). A crucial paper that uses novel in vivo technology to visualize the extensive vigilance of microglia, as they survey the brain environment.
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752â758 (2005). An essential paper that documents the ability of microglia to rapidly detect and respond to injury.
Fetler, L. & Amigorena, S. Neuroscience. Brain under surveillance: the microglia patrol. Science 309, 392â393 (2005).
Oehmichen, W. & Gencic, M. Experimental studies on kinetics and functions of monuclear phagozytes of the central nervous system. Acta Neuropathol. Suppl. (Berl) Suppl. 6, 285â290 (1975).
Cho, B. P. et al. Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53, 92â102 (2006).
Rock, R. B. et al. Role of microglia in central nervous system infections. Clin. Microbiol. Rev. 17, 942â964 (2004).
Harry, G. J., McPherson, C. A., Wine, R. N., Atkinson, K. & Lefebvre d'Hellencourt, C. Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox. Res. 5, 623â627 (2004).
Streit, W. J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133â139 (2002).
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489â502 (2006).
Wilkinson, B., Koenigsknecht-Talboo, J., Grommes, C., Lee, C. Y. & Landreth, G. Fibrillar β-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J. Biol. Chem. 281, 20842â20850 (2006).
Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320â4330 (2005).
Town, T., Nikolic, V. & Tan, J. The microglial 'activation' continuum: from innate to adaptive responses. J. Neuroinflammation 2, 24 (2005).
Marin-Teva, J. L. et al. Microglia promote the death of developing purkinje cells. Neuron 41, 535â547 (2004).
Upender, M. B. & Naegele, J. R. Activation of microglia during developmentally regulated cell death in the cerebral cortex. Dev. Neurosci. 21, 491â505 (1999).
Muller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nature Rev. Neurosci. 7, 75â84 (2006).
Morgan, S. C., Taylor, D. L. & Pocock, J. M. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J. Neurochem. 90, 89â101 (2004).
Liao, H., Bu, W. Y., Wang, T. H., Ahmed, S. & Xiao, Z. C. Tenascin-R plays a role in neuroprotection via its distinct domains coordinate to modulate the microglia function. J. Biol. Chem. 280, 8316â8323 (2004).
Aarum, J., Sandberg, K., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983â15988 (2003).
Walton, N. M. et al. Microglia instruct subventricular zone neurogenesis. Glia 54, 815â825 (2006).
Polazzi, E. & Contestabile, A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci. 13, 221â242 (2002).
Ziv, Y., Avidan, H., Pluchino, S., Martino, G. & Schwartz, M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl Acad. Sci. USA 103, 13174â13179 (2006).
Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268â275 (2006).
Colton, C. A. & Gilbert, D. L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 223, 284â288 (1987).
Moss, D. W. & Bates, T. E. Activation of murine microglial cell lines by lipopolysaccharide and interferon-γ causes NO-mediated decreases in mitochondrial and cellular function. Eur. J. Neurosci. 13, 529â538 (2001).
Liu, B. et al. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318â331 (2002).
Sawada, M., Kondo, N., Suzumura, A. & Marunouchi, T. Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res. 491, 394â397 (1989).
Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F. & Berman, J. W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 β. J. Immunol. 150, 2659â2667 (1993).
Yankner, B. A. Amyloid and Alzheimer's disease--cause or effect? Neurobiol. Aging 10, 470â471; discussion 477â478 (1989).
McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 79, 195â200 (1987).
Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339â349 (1988).
Braak, H. & Braak, E. Morphological criteria for the recognition of Alzheimer's disease and the distribution pattern of cortical changes related to this disorder. Neurobiol. Aging 15, 355â356; discussion 379â380 (1994).
Xiang, Z., Haroutunian, V., Ho, L., Purohit, D. & Pasinetti, G. M. Microglia activation in the brain as inflammatory biomarker of Alzheimer's disease neuropathology and clinical dementia. Dis. Markers 22, 95â102 (2006).
Yankner, B. A., Duffy, L. K. & Kirschner, D. A. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250, 279â282 (1990).
Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B. & Landreth, G. E. Inflammatory mechanisms in Alzheimer's disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20, 558â567 (2000).
Qin, L. et al. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 83, 973â983 (2002).
Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461â467 (2001).
Veerhuis, R. et al. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp. Neurol. 160, 289â299 (1999).
Ii, M., Sunamoto, M., Ohnishi, K. & Ichimori, Y. β-amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 720, 93â100 (1996).
Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S. & Ang Ling, E. Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia 50, 21â31 (2004).
Sasaki, A., Yamaguchi, H., Ogawa, A., Sugihara, S. & Nakazato, Y. Microglial activation in early stages of amyloid β protein deposition. Acta Neuropathol. (Berl) 94, 316â322 (1997).
Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647â650 (1995).
Griffin, W. S. et al. Glialâneuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. Brain Pathol. 8, 65â72 (1998).
McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285â1291 (1988).
Langston, J. W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Ann. Neurol. 46, 598â605 (1999). A crucial paper, documenting that neurodegeneration in response to a single toxin exposure in humans continued years after the toxin had been metabolized.
Imamura, K. et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol (Berl) 106, 518â526 (2003).
Loeffler, D. A., DeMaggio, A. J., Juneau, P. L., Havaich, M. K. & LeWitt, P. A. Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin. Neuropharmacol. 17, 370â379 (1994).
Zigmond, M. J., Hastings, T. G. & Perez, R. G. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat. Disord. 8, 389â393 (2002).
Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nature Rev. Neurosci. 5, 863â873 (2004).
Kim, W. G. et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309â6316 (2000).
Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. Faseb J. 19, 533â542 (2005).
Kim, Y. S. et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci. 25, 3701â3711 (2005).
Kim, Y. et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglia activation. Faseb J. 20 Nov 2006 (doi:10.1096/fj.06â5865com).
Zecca, L., Zucca, F. A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578â580 (2003). A comprehensive review that explains the role of neuromelanin in reactive microgliosis.
Wilms, H. et al. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. Faseb J. 17, 500â502 (2003).
Ozdener, H. Molecular mechanisms of HIV-1 associated neurodegeneration. J. Biosci. 30, 391â405 (2005).
Budka, H. The definition of HIV-specific neuropathology. Acta Pathol. Jpn 41, 182â191 (1991).
Jordan, C. A., Watkins, B. A., Kufta, C. & Dubois-Dalcq, M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J. Virol. 65, 736â742 (1991).
Ryzhova, E. V. et al. Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297, 57â67 (2002).
Speth, C., Dierich, M. P. & Sopper, S. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol. Immunol. 42, 213â228 (2005).
Chakrabarti, L. et al. Early viral replication in the brain of SIV-infected rhesus monkeys. Am. J. Pathol. 139, 1273â1280 (1991).
Ryan, L. A., Cotter, R. L., Zink, W. E., Gendelman, H. E. & Zheng, J. Macrophages, chemokines and neuronal injury in HIV-1-associated dementia. Cell. Mol. Biol. (Noisy-le-grand) 48, 137â150 (2002).
Sopper, S. et al. The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220, 320â329 (1996).
Sheng, W. S., Hu, S., Hegg, C. C., Thayer, S. A. & Peterson, P. K. Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin. Immunol. 96, 243â251 (2000).
D'Aversa, T. G., Yu, K. O. & Berman, J. W. Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J. Neurovirol. 10, 86â97 (2004).
Garden, G. A. et al. HIV associated neurodegeneration requires p53 in neurons and microglia. Faseb J. 18, 1141â1143 (2004).
Kong, L. Y. et al. The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell. Immunol. 172, 77â83 (1996).
Lipton, S. A. & Gendelman, H. E. Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Med. 332, 934â940 (1995).
Perry, V. H., Cunningham, C. & Boche, D. Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol. 15, 349â354 (2002).
Combrinck, M. I., Perry, V. H. & Cunningham, C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112, 7â11 (2002).
Takeuchi, H. et al. Interferon-γ induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol. Dis. 22, 33â39 (2006).
Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705â2712 (2005).
McGeer, P. L. & McGeer, E. G. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26, 459â470 (2002).
Solomon, J. N. et al. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53, 744â753 (2006).
Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161â172 (2001).
Singhrao, S. K., Neal, J. W., Morgan, B. P. & Gasque, P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159, 362â376 (1999).
Schofield, E., Kersaitis, C., Shepherd, C. E., Kril, J. J. & Halliday, G. M. Severity of gliosis in Pick's disease and frontotemporal lobar degeneration: Ï-positive glia differentiate these disorders. Brain 126, 827â840 (2003).
Paulus, W., Bancher, C. & Jellinger, K. Microglial reaction in Pick's disease. Neurosci. Lett. 161, 89â92 (1993).
Zheng, Z. & Yenari, M. A. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol. Res. 26, 884â892 (2004).
Gerhard, A., Schwarz, J., Myers, R., Wise, R. & Banati, R. B. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24, 591â595 (2005).
Mogi, M. et al. Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208â210 (1994).
Banati, R. B., Gehrmann, J., Schubert, P. & Kreutzberg, G. W. Cytotoxicity of microglia. Glia 7, 111â118 (1993).
Jellinger, K. A. Prevalence of cerebrovascular lesions in Parkinson's disease. A postmortem study. Acta Neuropathol. (Berl) 105, 415â419 (2003).
Farkas, E., De Jong, G. I., de Vos, R. A., Jansen Steur, E. N. & Luiten, P. G. Pathological features of cerebral cortical capillaries are doubled in Alzheimer's disease and Parkinson's disease. Acta Neuropathol (Berl) 100, 395â402 (2000).
Conde, J. R. & Streit, W. J. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65, 199â203 (2006).
Sheng, J. G., Mrak, R. E. & Griffin, W. S. Enlarged and phagocytic, but not primed, interleukin-1 α-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol. (Berl) 95, 229â234 (1998).
Vaughan, D. W. & Peters, A. Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J. Neurocytol. 3, 405â429 (1974).
Stuesse, S. L., Cruce, W. L., Lovell, J. A., McBurney, D. L. & Crisp, T. Microglial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci. Lett. 287, 121â124 (2000).
Rozovsky, I., Finch, C. E. & Morgan, T. E. Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol. Aging 19, 97â103 (1998).
Sugama, S. et al. Age-related microglial activation in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res. 964, 288â294 (2003).
Blasko, I. et al. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell. 3, 169â176 (2004).
Huh, Y. et al. Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats. Neurosci. Lett. 349, 63â67 (2003).
McGeer, P. L., Schwab, C., Parent, A. & Doudet, D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine administration. Ann. Neurol. 54, 599â604 (2003).
Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. Faseb J. 17, 1954â1956 (2003).
Gao, H. M. et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285â1297 (2002). A crucial paper documenting that microglial activation is progressive and selective for dopaminergic neurons.
Gibbons, H. M. & Dragunow, M. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res. 1084, 1â15 (2006).
Ling, Z. et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov. Disord. 17, 116â124 (2002).
Ling, Z. et al. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199, 499â512 (2006).
Carvey, P. M., Chang, Q., Lipton, J. W. & Ling, Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson's disease. Front. Biosci. 8, S826âS837 (2003). An essential paper demonstrating that microglia have a critical period in utero , where immunological perturbation will result in microglial activation and dopaminergic neuron damage that persists into adulthood.
Wu, D. C. et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 6145â6150 (2003). A crucial paper illustrating the role of microglial NADPH oxidase in a component of MPTP-induced dopaminergic neurotoxicity.
Zhang, W. et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. Faseb J. 18, 589â591 (2004).
Choi, D. K. et al. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci. 25, 6594â6600 (2005).
Feng, Z. H. et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1,2,3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci. Lett. 329, 354â358 (2002).
Teismann, P. et al. COX-2 and neurodegeneration in Parkinson's disease. Ann. NY Acad. Sci. 991, 272â277 (2003).
Vijitruth, R. et al. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. J. Neuroinflammation 3, 6 (2006).
Wang, T. et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. Faseb J. 19, 1134â1136 (2005).
Wu, D. C. et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763â1771 (2002).
Sriram, K. et al. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. Faseb J. 16, 1474â1476 (2002).
Sriram, K. et al. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-α. Faseb J. 20, 670â682 (2006).
Sriram, K., Miller, D. B. & O'Callaghan, J. P. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J. Neurochem. 96, 706â718 (2006).
Block, M. L. & Hong, J. S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77â98 (2005). A comprehensive review summarizing how microglia become activated and contribute to neurodegenerative disease.
Teismann, P. et al. Pathogenic role of glial cells in Parkinson's disease. Mov. Disord. 18, 121â129 (2003).
Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J. Neurosci. 23, 1228â1236 (2003).
Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. Faseb J. 17, 1957â1959 (2003).
Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. & Perry, V. H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275â9284 (2005).
Block, M. L. et al. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. Faseb J. 20, 251â258 (2006).
Brenneman, D. E. & Gozes, I. A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299â2307 (1996).
Qin, L. et al. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. Faseb J. 19, 550â557 (2005).
Rivest, S. Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron 49, 4â8 (2006).
Ramirez, B. G., Blazquez, C., Gomez del Pulgar, T., Guzman, M. & de Ceballos, M. L. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25, 1904â1913 (2005).
Boche, D., Cunningham, C., Docagne, F., Scott, H. & Perry, V. H. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol. Dis. 22, 638â650 (2006).
Boche, D., Cunningham, C., Gauldie, J. & Perry, V. H. Transforming growth factor-β 1-mediated neuroprotection against excitotoxic injury in vivo. J. Cereb. Blood Flow Metab. 23, 1174â1182 (2003).
Johnson, A. B., Bake, S., Lewis, D. K. & Sohrabji, F. Temporal expression of IL-1β protein and mRNA in the brain after systemic LPS injection is affected by age and estrogen. J. Neuroimmunol. 174, 82â91 (2006).
Glezer, I. & Rivest, S. Glucocorticoids: protectors of the brain during innate immune responses. Neuroscientist 10, 538â552 (2004).
Nadeau, S. & Rivest, S. Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J. Neurosci. 23, 5536â5544 (2003).
Morale, M. C. et al. Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. Faseb J. 18, 164â166 (2004).
Peng, G. S. et al. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res. Mol. Brain Res. 134, 162â169 (2005).
Dragunow, M. et al. Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 140, 1149â1156 (2006).
Carvey, P. M., Punati, A. & Newman, M. B. Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis. Cell Transplant 15, 239â250 (2006). An excellent review explaining the multiple hit hypothesis and how multiple cumulative environmental exposures are likely to result in neurodegenerative disease.
Duvoisin, R. C., Yahr, M. D., Schweitzer, M. D. & Merritt, H. H. Parkinsonism before and since the Epidemic of Encephalitis Lethargica. Arch. Neurol. 30, 232â236 (1963).
Pradhan, S., Pandey, N., Shashank, S., Gupta, R. K. & Mathur, A. Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology 53, 1781â1786 (1999).
Elbaz, A. et al. CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease. Ann. Neurol. 55, 430â434 (2004).
Sherer, T. B., Betarbet, R. & Greenamyre, J. T. Pesticides and Parkinson's disease. ScientificWorldJournal 1, 207â208 (2001).
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979â980 (1983).
Miwa, H., Kubo, T., Suzuki, A., Nishi, K. & Kondo, T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci. Lett. 380, 93â98 (2005).
McNaught, K. S., Perl, D. P., Brownell, A. L. & Olanow, C. W. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann. Neurol. 56, 149â162 (2004).
Sadek, A. H., Rauch, R. & Schulz, P. E. Parkinsonism due to manganism in a welder. Int. J. Toxicol. 22, 393â401 (2003).
Hudnell, H. K. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 20, 379â397 (1999).
Iregren, A. Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests. Neurotoxicology 20, 315â323 (1999).
Arai, H. et al. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. J. Biol. Chem. 279, 51647â51653 (2004).
Wu, X. F. et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid. Redox Signal. 7, 654â661 (2005).
Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782â790 (2002).
Ling, Z. et al. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp. Neurol. 190, 373â383 (2004).
Zhou, Y., Wang, Y., Kovacs, M., Jin, J. & Zhang, J. Microglial activation induced by neurodegeneration: a proteomic analysis. Mol. Cell Proteomics 4, 1471â1479 (2005).
Block, M. L. et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. Faseb J. 18, 1618â1620 (2004).
Nel, A. Atmosphere. Air pollution-related illness: effects of particles. Science 308, 804â806 (2005).
Takenaka, S. et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 109, 547â551 (2001).
Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. Jama 294, 3003â3010 (2005).
Wellenius, G. A., Schwartz, J. & Mittleman, M. A. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 36, 2549â2553 (2005).
Campbell, A. et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26, 133â140 (2005).
Calderon-Garciduenas, L. et al. Air pollution and brain damage. Toxicol. Pathol. 30, 373â389 (2002).
Calderon-Garciduenas, L. et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol. Pathol. 31, 524â538 (2003).
Calderon-Garciduenas, L. et al. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol. Pathol. 32, 650â658 (2004).
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783â801 (2006).
Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823â835 (2006).
McKimmie, C. S. & Fazakerley, J. K. In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J. Neuroimmunol. 169, 116â125 (2005).
Olson, J. K. & Miller, S. D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916â3924 (2004).
Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497â504 (2000).
Lehnardt, S. et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl Acad. Sci. USA 100, 8514â8519 (2003).
Chakravarty, S. & Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25, 1788â1796 (2005).
Lehnardt, S. et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 22, 2478â2486 (2002).
Bsibsi, M., Ravid, R., Gveric, D. & van Noort, J. M. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013â1021 (2002).
Tanga, F. Y., Nutile-McMenemy, N. & DeLeo, J. A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA 102, 5856â5861 (2005).
Jou, I. et al. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am. J. Pathol. 168, 1619â1630 (2006).
Glezer, I., Lapointe, A. & Rivest, S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. Faseb J. 20, 750â752 (2006).
Aravalli, R. N., Hu, S., Rowen, T. N., Palmquist, J. M. & Lokensgard, J. R. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J. Immunol. 175, 4189â4193 (2005).
Chen, K. et al. Activation of Toll-like receptor 2 on microglia promotes cell uptake of alzheimer disease-associated amyloid β peptide. J. Biol. Chem. 281, 3651â3659 (2006).
Ebert, S. et al. Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J. Neuroimmunol. 159, 87â96 (2005).
Town, T., Jeng, D., Alexopoulou, L., Tan, J. & Flavell, R. A. Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176, 3804â3812 (2006).
Dalpke, A. H. et al. Immunostimulatory CpG-DNA activates murine microglia. J. Immunol. 168, 4854â4863 (2002).
Murphy, J. E., Tedbury, P. R., Homer-Vanniasinkam, S., Walker, J. H. & Ponnambalam, S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182, 1â15 (2005).
Husemann, J., Loike, J. D., Anankov, R., Febbraio, M. & Silverstein, S. C. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40, 195â205 (2002).
El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D. & Silverstein, S. C. Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol. Aging 19, S81âS84 (1998).
Grewal, R. P., Yoshida, T., Finch, C. E. & Morgan, T. E. Scavenger receptor mRNAs in rat brain microglia are induced by kainic acid lesioning and by cytokines. Neuroreport 8, 1077â1081 (1997).
Cho, S. et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J. Neurosci. 25, 2504â2512 (2005).
El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382, 716â719 (1996).
Husemann, J., Loike, J. D., Kodama, T. & Silverstein, S. C. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β-amyloid. J. Neuroimmunol. 114, 142â150 (2001).
Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol. 160, 101â112 (2002).
Alarcon, R., Fuenzalida, C., Santibanez, M. & von Bernhardi, R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound β-amyloid. J. Biol. Chem. 280, 30406â30415 (2005).
Granucci, F. et al. The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102, 2940â2947 (2003).
Arancio, O. et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. Embo J. 23, 4096â4105 (2004).
Lue, L. F. et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29â45 (2001).
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685â691 (1996).
Ross, G. D. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/αMβ2-integrin glycoprotein. Crit. Rev. Immunol. 20, 197â222 (2000).
Ross, G. D. & Vetvicka, V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol. 92, 181â184 (1993).
Le Cabec, V., Carreno, S., Moisand, A., Bordier, C. & Maridonneau-Parini, I. Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 169, 2003â2009 (2002).
Akiyama, H. & McGeer, P. L. Brain microglia constitutively express β-2 integrins. J. Neuroimmunol. 30, 81â93 (1990).
Coxon, A. et al. A novel role for the β 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653â666 (1996).
Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar beta-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 24, 9838â9846 (2004).
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci. 23, 2665â2674 (2003).
Reichert, F. & Rotshenker, S. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol. Dis. 12, 65â72 (2003).
Babior, B. M. Phagocytes and oxidative stress. Am. J. Med. 109, 33â44 (2000).
Suh, C. I. et al. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcγIIA receptor-induced phagocytosis. J. Exp. Med. 203, 1915â1925 (2006).
Shimohama, S. et al. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 273, 5â9 (2000).
Walder, C. E. et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252â2258 (1997).
Tang, J. et al. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J. Neurochem. 94, 1342â1350 (2005).
Li, J., Baud, O., Vartanian, T., Volpe, J. J. & Rosenberg, P. A. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl Acad. Sci. USA 102, 9936â9941 (2005).
Qin, L. et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415â1421 (2004). An essential paper documenting the role of microglial NADPH oxidase in neurotoxicity and pro-inflammatory gene expression.
Gao, H. M., Liu, B. & Hong, J. S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 23, 6181â6187 (2003).
Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. Faseb J. 17, 1954â1956 (2003).
Choi, S. H. et al. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J. Neurochem. 95, 1755â1765 (2005).
Qin, B. et al. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol. Aging 27, 1577â1587 (2005).
Min, K. J. et al. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 48, 197â206 (2004).
Mander, P. K., Jekabsone, A. & Brown, G. C. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J. Immunol. 176, 1046â1052 (2006).
Pawate, S., Shen, Q., Fan, F. & Bhat, N. R. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J. Neurosci. Res. 77, 540â551 (2004).
Mayadas, T. N. & Cullere, X. Neutrophil β2 integrins: moderators of life or death decisions. Trends Immunol. 26, 388â395 (2005).
Sim, S. et al. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J. Immunol. 174, 4279â4288 (2005).
Aronis, A., Madar, Z. & Tirosh, O. Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221â1230 (2005).
Li, Q. & Engelhardt, J. F. Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J. Biol. Chem. 281, 1495â1505 (2006).
Engelhardt, J. F., Sen, C. K. & Oberley, L. Redox-modulating gene therapies for human diseases. Antioxid. Redox Signal. 3, 341â346 (2001). An informative review detailing redox signalling and human disease.
Vilhardt, F. et al. The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J. Biol. Chem. 277, 42136â42143 (2002).
Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nature Rev. Neurosci. 7, 449â463 (2006).
Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404â412 (2006). An excellent study illustrating how microglia are non-invasively imaged in patients with Parkinson's disease.
Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168â175 (2005).
Gerhard, A. et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61, 686â689 (2003).
Cicchetti, F. et al. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur. J. Neurosci. 15, 991â998 (2002).
Pavese, N. et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66, 1638â1643 (2006).
Cordle, A. & Landreth, G. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses. J. Neurosci. 25, 299â307 (2005).
Ho, L., Qin, W., Stetka, B. S. & Pasinetti, G. M. Is there a future for cyclo-oxygenase inhibitors in Alzheimer's disease? CNS Drugs 20, 85â98 (2006).
Hernan, M. A., Logroscino, G. & Garcia Rodriguez, L. A. Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology 66, 1097â1099 (2006).
Ton, T. G. et al. Nonsteroidal anti-inflammatory drugs and risk of Parkinson's disease. Mov. Disord. 21, 964â969 (2006).
Wang, T. et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem. 88, 939â947 (2004).
Bonneh-Barkay, D., Reaney, S. H., Langston, W. J. & Di Monte, D. A. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res. Mol. Brain Res. 134, 52â56 (2005).
Luber-Narod, J., Kage, R. & Leeman, S. E. Substance P enhances the secretion of tumor necrosis factor-α from neuroglial cells stimulated with lipopolysaccharide. J. Immunol. 152, 819â824 (1994).
Gayle, D. A. et al. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-α, interleukin-1β, and nitric oxide. Brain Res. Dev. Brain Res. 133, 27â35 (2002).
Croisier, E. & Graeber, M. B. Glial degeneration and reactive gliosis in α-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol. (Berl) 112, 517â530 (2006). An excellent review outlining how glial cells contribute to neurodegeneration.
Choi, S. H., Lee, D. Y., Kim, S. U. & Jin, B. K. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J. Neurosci. 25, 4082â4090 (2005).
Choi, S. H., Joe, E. H., Kim, S. U. & Jin, B. K. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 5877â5886 (2003).
Kim, K. Y. et al. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-α release. Neuroreport 13, 849â852 (2002).
Acknowledgements
L.Z. was supported with a grant from the Michael J. Fox Foundation and the MIUR-FIRB project on Protein Folding and Aggregation: Metal and Biomolecules in Protein Conformational Diseases. M.L.B. was supported by the National Institutes of Health (NIH) Pathway to Independence Award. This work was also supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
OMIM
Glossary
- Pattern recognition receptors
-
(PRRs). Receptors that bind to molecular patterns found in pathogens. Examples include the mannose receptor, which binds to terminally mannosylated and polymannosylated compounds, and Toll-like receptors, which are activated by various microbial products such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA.
- Microgliosis
-
The generalized microglial response to tissue damage that can be either beneficial or detrimental. The negative and progressive response is also referred to as reactive microgliosis.
- MPTP
-
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). A contamination product from incorrect synthesis of the abused opiate drug, 1-methyl-4-phenyl-4-propionoxypiperidine. In the brain, MPTP is converted to its active metabolite MPP+ (1methyl-4-phenylpyridinium ion), which is selectively toxic to dopaminergic neurons and results in rapid development of Parkinson's disease symptoms in humans and animals.
- Lipopolysaccharide
-
(LPS). An endotoxin that is a complex macromolecule containing a polysaccharide covalently linked to a unique lipid structure, termed lipid A. All gram-negative bacteria synthesize LPS, which is a main constituent of their outer cell membrane.
- Endotoxemia
-
A condition in which endotoxin (a toxin component of the cell wall of gram-negative bacteria that is only released on destruction of the bacterial cell) accesses the blood stream to induce systemic inflammation.
Rights and permissions
About this article
Cite this article
Block, M., Zecca, L. & Hong, JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57â69 (2007). https://doi.org/10.1038/nrn2038
Issue Date:
DOI: https://doi.org/10.1038/nrn2038
This article is cited by
-
Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity
Journal of Neuroinflammation (2024)
-
Interleukin-4 from curcumin-activated OECs emerges as a central modulator for increasing M2 polarization of microglia/macrophage in OEC anti-inflammatory activity for functional repair of spinal cord injury
Cell Communication and Signaling (2024)
-
Neuropathogenesis-on-chips for neurodegenerative diseases
Nature Communications (2024)
-
HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape
Experimental & Molecular Medicine (2024)
-
Large-scale functional network connectivity mediates the association between nigral neuromelanin hypopigmentation and motor impairment in Parkinsonâs disease
Brain Structure and Function (2024)