Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia-mediated neurotoxicity: uncovering the molecular mechanisms

Key Points

  • Unregulated microglial activation is a contributing mechanism of neuronal damage in neurodegenerative diseases.

  • Microglia continuously monitor the brain environment and are activated in response to diverse cues, including both endogenous proteins and externally derived environmental toxins.

  • Recent studies show that NADPH oxidase is a common mechanism of microglia-mediated neurotoxicity and is the primary source of microglia-derived extracellular reactive oxygen species (ROS) for numerous neurotoxic stimuli.

  • Pattern recognition receptors are a predominant mechanism through which microglia transduce diverse toxin signals into the production of ROS, identifying a common pathway of microglia-mediated neurotoxicity.

  • By using in vivo imaging to identify deleterious microglial activation combined with targeted anti-inflammatory therapy to inhibit the common neurotoxic mechanisms of microglial activation, it might be possible to slow or halt the progression of neurodegenerative disease.

Abstract

Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactive microgliosis drives progressive neurotoxicity.
Figure 2: Microglial PRRs identify neurotoxic and pro-inflammatory ligands.
Figure 3: Intracellular ROS regulate microglial activation.
Figure 4: PET imaging of microglia in neurodegeneration.
Figure 5: Microglial activation, neuronal death and the therapeutic relevance.

Similar content being viewed by others

References

  1. Zecca, L., Zucca, F. A., Albertini, A., Rizzio, E. & Fariello, R. G. A proposed dual role of neuromelanin in the pathogenesis of Parkinson's disease. Neurology 67, S8–S11 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. McGeer, P. L., Rogers, J. & McGeer, E. G. Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J. Alzheimers Dis. 9, 271–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, Y. S. & Joh, T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp. Mol. Med. 38, 333–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. del Rio-Hortega, P. Cytology and Cellular Pathology of the Nervous System (ed. Hocker, P. P.) (Penfeild Wed, New York, 1932).

    Google Scholar 

  5. Mittelbronn, M., Dietz, K., Schluesener, H. J. & Meyermann, R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. (Berl) 101, 249–255 (2001).

    CAS  Google Scholar 

  6. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). A crucial paper that uses novel in vivo technology to visualize the extensive vigilance of microglia, as they survey the brain environment.

    Article  CAS  PubMed  Google Scholar 

  8. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005). An essential paper that documents the ability of microglia to rapidly detect and respond to injury.

    Article  CAS  PubMed  Google Scholar 

  9. Fetler, L. & Amigorena, S. Neuroscience. Brain under surveillance: the microglia patrol. Science 309, 392–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Oehmichen, W. & Gencic, M. Experimental studies on kinetics and functions of monuclear phagozytes of the central nervous system. Acta Neuropathol. Suppl. (Berl) Suppl. 6, 285–290 (1975).

    Google Scholar 

  11. Cho, B. P. et al. Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 53, 92–102 (2006).

    Article  PubMed  Google Scholar 

  12. Rock, R. B. et al. Role of microglia in central nervous system infections. Clin. Microbiol. Rev. 17, 942–964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harry, G. J., McPherson, C. A., Wine, R. N., Atkinson, K. & Lefebvre d'Hellencourt, C. Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox. Res. 5, 623–627 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Streit, W. J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139 (2002).

    Article  PubMed  Google Scholar 

  15. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wilkinson, B., Koenigsknecht-Talboo, J., Grommes, C., Lee, C. Y. & Landreth, G. Fibrillar β-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J. Biol. Chem. 281, 20842–20850 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Town, T., Nikolic, V. & Tan, J. The microglial 'activation' continuum: from innate to adaptive responses. J. Neuroinflammation 2, 24 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marin-Teva, J. L. et al. Microglia promote the death of developing purkinje cells. Neuron 41, 535–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Upender, M. B. & Naegele, J. R. Activation of microglia during developmentally regulated cell death in the cerebral cortex. Dev. Neurosci. 21, 491–505 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Muller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nature Rev. Neurosci. 7, 75–84 (2006).

    Article  CAS  Google Scholar 

  22. Morgan, S. C., Taylor, D. L. & Pocock, J. M. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J. Neurochem. 90, 89–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Liao, H., Bu, W. Y., Wang, T. H., Ahmed, S. & Xiao, Z. C. Tenascin-R plays a role in neuroprotection via its distinct domains coordinate to modulate the microglia function. J. Biol. Chem. 280, 8316–8323 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Aarum, J., Sandberg, K., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walton, N. M. et al. Microglia instruct subventricular zone neurogenesis. Glia 54, 815–825 (2006).

    Article  PubMed  Google Scholar 

  26. Polazzi, E. & Contestabile, A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci. 13, 221–242 (2002).

    Article  PubMed  Google Scholar 

  27. Ziv, Y., Avidan, H., Pluchino, S., Martino, G. & Schwartz, M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl Acad. Sci. USA 103, 13174–13179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neurosci. 9, 268–275 (2006).

    CAS  PubMed  Google Scholar 

  29. Colton, C. A. & Gilbert, D. L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 223, 284–288 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Moss, D. W. & Bates, T. E. Activation of murine microglial cell lines by lipopolysaccharide and interferon-γ causes NO-mediated decreases in mitochondrial and cellular function. Eur. J. Neurosci. 13, 529–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, B. et al. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Sawada, M., Kondo, N., Suzumura, A. & Marunouchi, T. Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res. 491, 394–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F. & Berman, J. W. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 β. J. Immunol. 150, 2659–2667 (1993).

    CAS  PubMed  Google Scholar 

  34. Yankner, B. A. Amyloid and Alzheimer's disease--cause or effect? Neurobiol. Aging 10, 470–471; discussion 477–478 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 79, 195–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Braak, H. & Braak, E. Morphological criteria for the recognition of Alzheimer's disease and the distribution pattern of cortical changes related to this disorder. Neurobiol. Aging 15, 355–356; discussion 379–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Xiang, Z., Haroutunian, V., Ho, L., Purohit, D. & Pasinetti, G. M. Microglia activation in the brain as inflammatory biomarker of Alzheimer's disease neuropathology and clinical dementia. Dis. Markers 22, 95–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yankner, B. A., Duffy, L. K. & Kirschner, D. A. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B. & Landreth, G. E. Inflammatory mechanisms in Alzheimer's disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20, 558–567 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin, L. et al. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 83, 973–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Veerhuis, R. et al. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp. Neurol. 160, 289–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ii, M., Sunamoto, M., Ohnishi, K. & Ichimori, Y. β-amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 720, 93–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S. & Ang Ling, E. Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia 50, 21–31 (2004).

    Article  Google Scholar 

  46. Sasaki, A., Yamaguchi, H., Ogawa, A., Sugihara, S. & Nakazato, Y. Microglial activation in early stages of amyloid β protein deposition. Acta Neuropathol. (Berl) 94, 316–322 (1997).

    Article  CAS  Google Scholar 

  47. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Griffin, W. S. et al. Glial–neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. Brain Pathol. 8, 65–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Langston, J. W. et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605 (1999). A crucial paper, documenting that neurodegeneration in response to a single toxin exposure in humans continued years after the toxin had been metabolized.

    Article  CAS  PubMed  Google Scholar 

  51. Imamura, K. et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol (Berl) 106, 518–526 (2003).

    Article  CAS  Google Scholar 

  52. Loeffler, D. A., DeMaggio, A. J., Juneau, P. L., Havaich, M. K. & LeWitt, P. A. Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin. Neuropharmacol. 17, 370–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Zigmond, M. J., Hastings, T. G. & Perez, R. G. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat. Disord. 8, 389–393 (2002).

    Article  PubMed  Google Scholar 

  54. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nature Rev. Neurosci. 5, 863–873 (2004).

    Article  CAS  Google Scholar 

  55. Kim, W. G. et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. Faseb J. 19, 533–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, Y. S. et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci. 25, 3701–3711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, Y. et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglia activation. Faseb J. 20 Nov 2006 (doi:10.1096/fj.06–5865com).

  59. Zecca, L., Zucca, F. A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580 (2003). A comprehensive review that explains the role of neuromelanin in reactive microgliosis.

    Article  CAS  PubMed  Google Scholar 

  60. Wilms, H. et al. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. Faseb J. 17, 500–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Ozdener, H. Molecular mechanisms of HIV-1 associated neurodegeneration. J. Biosci. 30, 391–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Budka, H. The definition of HIV-specific neuropathology. Acta Pathol. Jpn 41, 182–191 (1991).

    CAS  PubMed  Google Scholar 

  63. Jordan, C. A., Watkins, B. A., Kufta, C. & Dubois-Dalcq, M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J. Virol. 65, 736–742 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ryzhova, E. V. et al. Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 297, 57–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Speth, C., Dierich, M. P. & Sopper, S. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol. Immunol. 42, 213–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Chakrabarti, L. et al. Early viral replication in the brain of SIV-infected rhesus monkeys. Am. J. Pathol. 139, 1273–1280 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ryan, L. A., Cotter, R. L., Zink, W. E., Gendelman, H. E. & Zheng, J. Macrophages, chemokines and neuronal injury in HIV-1-associated dementia. Cell. Mol. Biol. (Noisy-le-grand) 48, 137–150 (2002).

    CAS  Google Scholar 

  68. Sopper, S. et al. The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey. Virology 220, 320–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Sheng, W. S., Hu, S., Hegg, C. C., Thayer, S. A. & Peterson, P. K. Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin. Immunol. 96, 243–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. D'Aversa, T. G., Yu, K. O. & Berman, J. W. Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat. J. Neurovirol. 10, 86–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Garden, G. A. et al. HIV associated neurodegeneration requires p53 in neurons and microglia. Faseb J. 18, 1141–1143 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kong, L. Y. et al. The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell. Immunol. 172, 77–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Lipton, S. A. & Gendelman, H. E. Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Med. 332, 934–940 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Perry, V. H., Cunningham, C. & Boche, D. Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol. 15, 349–354 (2002).

    Article  PubMed  Google Scholar 

  75. Combrinck, M. I., Perry, V. H. & Cunningham, C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112, 7–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Takeuchi, H. et al. Interferon-γ induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol. Dis. 22, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  78. McGeer, P. L. & McGeer, E. G. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26, 459–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Solomon, J. N. et al. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53, 744–753 (2006).

    Article  PubMed  Google Scholar 

  80. Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Singhrao, S. K., Neal, J. W., Morgan, B. P. & Gasque, P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159, 362–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schofield, E., Kersaitis, C., Shepherd, C. E., Kril, J. J. & Halliday, G. M. Severity of gliosis in Pick's disease and frontotemporal lobar degeneration: τ-positive glia differentiate these disorders. Brain 126, 827–840 (2003).

    Article  PubMed  Google Scholar 

  83. Paulus, W., Bancher, C. & Jellinger, K. Microglial reaction in Pick's disease. Neurosci. Lett. 161, 89–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, Z. & Yenari, M. A. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol. Res. 26, 884–892 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Gerhard, A., Schwarz, J., Myers, R., Wise, R. & Banati, R. B. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24, 591–595 (2005).

    Article  PubMed  Google Scholar 

  86. Mogi, M. et al. Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Banati, R. B., Gehrmann, J., Schubert, P. & Kreutzberg, G. W. Cytotoxicity of microglia. Glia 7, 111–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Jellinger, K. A. Prevalence of cerebrovascular lesions in Parkinson's disease. A postmortem study. Acta Neuropathol. (Berl) 105, 415–419 (2003).

    Google Scholar 

  89. Farkas, E., De Jong, G. I., de Vos, R. A., Jansen Steur, E. N. & Luiten, P. G. Pathological features of cerebral cortical capillaries are doubled in Alzheimer's disease and Parkinson's disease. Acta Neuropathol (Berl) 100, 395–402 (2000).

    Article  CAS  Google Scholar 

  90. Conde, J. R. & Streit, W. J. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65, 199–203 (2006).

    Article  PubMed  Google Scholar 

  91. Sheng, J. G., Mrak, R. E. & Griffin, W. S. Enlarged and phagocytic, but not primed, interleukin-1 α-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol. (Berl) 95, 229–234 (1998).

    Article  CAS  Google Scholar 

  92. Vaughan, D. W. & Peters, A. Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J. Neurocytol. 3, 405–429 (1974).

    Article  CAS  PubMed  Google Scholar 

  93. Stuesse, S. L., Cruce, W. L., Lovell, J. A., McBurney, D. L. & Crisp, T. Microglial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci. Lett. 287, 121–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Rozovsky, I., Finch, C. E. & Morgan, T. E. Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol. Aging 19, 97–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Sugama, S. et al. Age-related microglial activation in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res. 964, 288–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Blasko, I. et al. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell. 3, 169–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Huh, Y. et al. Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats. Neurosci. Lett. 349, 63–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. McGeer, P. L., Schwab, C., Parent, A. & Doudet, D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine administration. Ann. Neurol. 54, 599–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. Faseb J. 17, 1954–1956 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Gao, H. M. et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285–1297 (2002). A crucial paper documenting that microglial activation is progressive and selective for dopaminergic neurons.

    Article  CAS  PubMed  Google Scholar 

  101. Gibbons, H. M. & Dragunow, M. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res. 1084, 1–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Ling, Z. et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov. Disord. 17, 116–124 (2002).

    Article  PubMed  Google Scholar 

  103. Ling, Z. et al. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199, 499–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Carvey, P. M., Chang, Q., Lipton, J. W. & Ling, Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson's disease. Front. Biosci. 8, S826–S837 (2003). An essential paper demonstrating that microglia have a critical period in utero , where immunological perturbation will result in microglial activation and dopaminergic neuron damage that persists into adulthood.

    Article  CAS  PubMed  Google Scholar 

  105. Wu, D. C. et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 6145–6150 (2003). A crucial paper illustrating the role of microglial NADPH oxidase in a component of MPTP-induced dopaminergic neurotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, W. et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. Faseb J. 18, 589–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Choi, D. K. et al. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci. 25, 6594–6600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Feng, Z. H. et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1,2,3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci. Lett. 329, 354–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Teismann, P. et al. COX-2 and neurodegeneration in Parkinson's disease. Ann. NY Acad. Sci. 991, 272–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Vijitruth, R. et al. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. J. Neuroinflammation 3, 6 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, T. et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. Faseb J. 19, 1134–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, D. C. et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763–1771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sriram, K. et al. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. Faseb J. 16, 1474–1476 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Sriram, K. et al. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-α. Faseb J. 20, 670–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Sriram, K., Miller, D. B. & O'Callaghan, J. P. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J. Neurochem. 96, 706–718 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Block, M. L. & Hong, J. S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77–98 (2005). A comprehensive review summarizing how microglia become activated and contribute to neurodegenerative disease.

    Article  CAS  PubMed  Google Scholar 

  117. Teismann, P. et al. Pathogenic role of glial cells in Parkinson's disease. Mov. Disord. 18, 121–129 (2003).

    Article  PubMed  Google Scholar 

  118. Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J. Neurosci. 23, 1228–1236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. Faseb J. 17, 1957–1959 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. & Perry, V. H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275–9284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Block, M. L. et al. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. Faseb J. 20, 251–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Brenneman, D. E. & Gozes, I. A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Qin, L. et al. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. Faseb J. 19, 550–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Rivest, S. Cannabinoids in microglia: a new trick for immune surveillance and neuroprotection. Neuron 49, 4–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Ramirez, B. G., Blazquez, C., Gomez del Pulgar, T., Guzman, M. & de Ceballos, M. L. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25, 1904–1913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boche, D., Cunningham, C., Docagne, F., Scott, H. & Perry, V. H. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol. Dis. 22, 638–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Boche, D., Cunningham, C., Gauldie, J. & Perry, V. H. Transforming growth factor-β 1-mediated neuroprotection against excitotoxic injury in vivo. J. Cereb. Blood Flow Metab. 23, 1174–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Johnson, A. B., Bake, S., Lewis, D. K. & Sohrabji, F. Temporal expression of IL-1β protein and mRNA in the brain after systemic LPS injection is affected by age and estrogen. J. Neuroimmunol. 174, 82–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Glezer, I. & Rivest, S. Glucocorticoids: protectors of the brain during innate immune responses. Neuroscientist 10, 538–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Nadeau, S. & Rivest, S. Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J. Neurosci. 23, 5536–5544 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Morale, M. C. et al. Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. Faseb J. 18, 164–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Peng, G. S. et al. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res. Mol. Brain Res. 134, 162–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Dragunow, M. et al. Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 140, 1149–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Carvey, P. M., Punati, A. & Newman, M. B. Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis. Cell Transplant 15, 239–250 (2006). An excellent review explaining the multiple hit hypothesis and how multiple cumulative environmental exposures are likely to result in neurodegenerative disease.

    Article  PubMed  Google Scholar 

  135. Duvoisin, R. C., Yahr, M. D., Schweitzer, M. D. & Merritt, H. H. Parkinsonism before and since the Epidemic of Encephalitis Lethargica. Arch. Neurol. 30, 232–236 (1963).

    Article  Google Scholar 

  136. Pradhan, S., Pandey, N., Shashank, S., Gupta, R. K. & Mathur, A. Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology 53, 1781–1786 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Elbaz, A. et al. CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease. Ann. Neurol. 55, 430–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Sherer, T. B., Betarbet, R. & Greenamyre, J. T. Pesticides and Parkinson's disease. ScientificWorldJournal 1, 207–208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  140. Miwa, H., Kubo, T., Suzuki, A., Nishi, K. & Kondo, T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci. Lett. 380, 93–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. McNaught, K. S., Perl, D. P., Brownell, A. L. & Olanow, C. W. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann. Neurol. 56, 149–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Sadek, A. H., Rauch, R. & Schulz, P. E. Parkinsonism due to manganism in a welder. Int. J. Toxicol. 22, 393–401 (2003).

    Article  PubMed  Google Scholar 

  143. Hudnell, H. K. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 20, 379–397 (1999).

    CAS  PubMed  Google Scholar 

  144. Iregren, A. Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests. Neurotoxicology 20, 315–323 (1999).

    CAS  PubMed  Google Scholar 

  145. Arai, H. et al. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. J. Biol. Chem. 279, 51647–51653 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, X. F. et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid. Redox Signal. 7, 654–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ling, Z. et al. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp. Neurol. 190, 373–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Zhou, Y., Wang, Y., Kovacs, M., Jin, J. & Zhang, J. Microglial activation induced by neurodegeneration: a proteomic analysis. Mol. Cell Proteomics 4, 1471–1479 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Block, M. L. et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. Faseb J. 18, 1618–1620 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Nel, A. Atmosphere. Air pollution-related illness: effects of particles. Science 308, 804–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Takenaka, S. et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 109, 547–551 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. Jama 294, 3003–3010 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Wellenius, G. A., Schwartz, J. & Mittleman, M. A. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 36, 2549–2553 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Campbell, A. et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26, 133–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Calderon-Garciduenas, L. et al. Air pollution and brain damage. Toxicol. Pathol. 30, 373–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Calderon-Garciduenas, L. et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol. Pathol. 31, 524–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Calderon-Garciduenas, L. et al. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution. Toxicol. Pathol. 32, 650–658 (2004).

    Article  PubMed  Google Scholar 

  159. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. McKimmie, C. S. & Fazakerley, J. K. In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J. Neuroimmunol. 169, 116–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Olson, J. K. & Miller, S. D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lehnardt, S. et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl Acad. Sci. USA 100, 8514–8519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chakravarty, S. & Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25, 1788–1796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lehnardt, S. et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 22, 2478–2486 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bsibsi, M., Ravid, R., Gveric, D. & van Noort, J. M. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Tanga, F. Y., Nutile-McMenemy, N. & DeLeo, J. A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA 102, 5856–5861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jou, I. et al. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am. J. Pathol. 168, 1619–1630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Glezer, I., Lapointe, A. & Rivest, S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. Faseb J. 20, 750–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Aravalli, R. N., Hu, S., Rowen, T. N., Palmquist, J. M. & Lokensgard, J. R. Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J. Immunol. 175, 4189–4193 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, K. et al. Activation of Toll-like receptor 2 on microglia promotes cell uptake of alzheimer disease-associated amyloid β peptide. J. Biol. Chem. 281, 3651–3659 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Ebert, S. et al. Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J. Neuroimmunol. 159, 87–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Town, T., Jeng, D., Alexopoulou, L., Tan, J. & Flavell, R. A. Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176, 3804–3812 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Dalpke, A. H. et al. Immunostimulatory CpG-DNA activates murine microglia. J. Immunol. 168, 4854–4863 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Murphy, J. E., Tedbury, P. R., Homer-Vanniasinkam, S., Walker, J. H. & Ponnambalam, S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Husemann, J., Loike, J. D., Anankov, R., Febbraio, M. & Silverstein, S. C. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40, 195–205 (2002).

    Article  PubMed  Google Scholar 

  178. El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D. & Silverstein, S. C. Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol. Aging 19, S81–S84 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Grewal, R. P., Yoshida, T., Finch, C. E. & Morgan, T. E. Scavenger receptor mRNAs in rat brain microglia are induced by kainic acid lesioning and by cytokines. Neuroreport 8, 1077–1081 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. Cho, S. et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J. Neurosci. 25, 2504–2512 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382, 716–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  182. Husemann, J., Loike, J. D., Kodama, T. & Silverstein, S. C. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β-amyloid. J. Neuroimmunol. 114, 142–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  183. Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol. 160, 101–112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alarcon, R., Fuenzalida, C., Santibanez, M. & von Bernhardi, R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound β-amyloid. J. Biol. Chem. 280, 30406–30415 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Granucci, F. et al. The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood 102, 2940–2947 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Arancio, O. et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. Embo J. 23, 4096–4105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lue, L. F. et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. Ross, G. D. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/αMβ2-integrin glycoprotein. Crit. Rev. Immunol. 20, 197–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  190. Ross, G. D. & Vetvicka, V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol. 92, 181–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Le Cabec, V., Carreno, S., Moisand, A., Bordier, C. & Maridonneau-Parini, I. Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 169, 2003–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Akiyama, H. & McGeer, P. L. Brain microglia constitutively express β-2 integrins. J. Neuroimmunol. 30, 81–93 (1990).

    Article  CAS  PubMed  Google Scholar 

  193. Coxon, A. et al. A novel role for the β 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653–666 (1996).

    Article  PubMed  Google Scholar 

  194. Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar beta-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 24, 9838–9846 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci. 23, 2665–2674 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Reichert, F. & Rotshenker, S. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol. Dis. 12, 65–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Babior, B. M. Phagocytes and oxidative stress. Am. J. Med. 109, 33–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  198. Suh, C. I. et al. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcγIIA receptor-induced phagocytosis. J. Exp. Med. 203, 1915–1925 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shimohama, S. et al. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 273, 5–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Walder, C. E. et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252–2258 (1997).

    Article  CAS  PubMed  Google Scholar 

  201. Tang, J. et al. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J. Neurochem. 94, 1342–1350 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Li, J., Baud, O., Vartanian, T., Volpe, J. J. & Rosenberg, P. A. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl Acad. Sci. USA 102, 9936–9941 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Qin, L. et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415–1421 (2004). An essential paper documenting the role of microglial NADPH oxidase in neurotoxicity and pro-inflammatory gene expression.

    Article  CAS  PubMed  Google Scholar 

  204. Gao, H. M., Liu, B. & Hong, J. S. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 23, 6181–6187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gao, H. M., Liu, B., Zhang, W. & Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. Faseb J. 17, 1954–1956 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Choi, S. H. et al. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J. Neurochem. 95, 1755–1765 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Qin, B. et al. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol. Aging 27, 1577–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Min, K. J. et al. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 48, 197–206 (2004).

    Article  PubMed  Google Scholar 

  209. Mander, P. K., Jekabsone, A. & Brown, G. C. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J. Immunol. 176, 1046–1052 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Pawate, S., Shen, Q., Fan, F. & Bhat, N. R. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J. Neurosci. Res. 77, 540–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Mayadas, T. N. & Cullere, X. Neutrophil β2 integrins: moderators of life or death decisions. Trends Immunol. 26, 388–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Sim, S. et al. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J. Immunol. 174, 4279–4288 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Aronis, A., Madar, Z. & Tirosh, O. Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221–1230 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Li, Q. & Engelhardt, J. F. Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J. Biol. Chem. 281, 1495–1505 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Engelhardt, J. F., Sen, C. K. & Oberley, L. Redox-modulating gene therapies for human diseases. Antioxid. Redox Signal. 3, 341–346 (2001). An informative review detailing redox signalling and human disease.

    Article  CAS  PubMed  Google Scholar 

  216. Vilhardt, F. et al. The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J. Biol. Chem. 277, 42136–42143 (2002).

    Article  CAS  PubMed  Google Scholar 

  217. Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nature Rev. Neurosci. 7, 449–463 (2006).

    Article  CAS  Google Scholar 

  218. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404–412 (2006). An excellent study illustrating how microglia are non-invasively imaged in patients with Parkinson's disease.

    Article  CAS  PubMed  Google Scholar 

  219. Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Gerhard, A. et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61, 686–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Cicchetti, F. et al. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur. J. Neurosci. 15, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Pavese, N. et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66, 1638–1643 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Cordle, A. & Landreth, G. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses. J. Neurosci. 25, 299–307 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ho, L., Qin, W., Stetka, B. S. & Pasinetti, G. M. Is there a future for cyclo-oxygenase inhibitors in Alzheimer's disease? CNS Drugs 20, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Hernan, M. A., Logroscino, G. & Garcia Rodriguez, L. A. Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology 66, 1097–1099 (2006).

    Article  PubMed  Google Scholar 

  226. Ton, T. G. et al. Nonsteroidal anti-inflammatory drugs and risk of Parkinson's disease. Mov. Disord. 21, 964–969 (2006).

    Article  PubMed  Google Scholar 

  227. Wang, T. et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem. 88, 939–947 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Bonneh-Barkay, D., Reaney, S. H., Langston, W. J. & Di Monte, D. A. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res. Mol. Brain Res. 134, 52–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Luber-Narod, J., Kage, R. & Leeman, S. E. Substance P enhances the secretion of tumor necrosis factor-α from neuroglial cells stimulated with lipopolysaccharide. J. Immunol. 152, 819–824 (1994).

    CAS  PubMed  Google Scholar 

  230. Gayle, D. A. et al. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-α, interleukin-1β, and nitric oxide. Brain Res. Dev. Brain Res. 133, 27–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  231. Croisier, E. & Graeber, M. B. Glial degeneration and reactive gliosis in α-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol. (Berl) 112, 517–530 (2006). An excellent review outlining how glial cells contribute to neurodegeneration.

    Article  Google Scholar 

  232. Choi, S. H., Lee, D. Y., Kim, S. U. & Jin, B. K. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J. Neurosci. 25, 4082–4090 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Choi, S. H., Joe, E. H., Kim, S. U. & Jin, B. K. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 5877–5886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Kim, K. Y. et al. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-α release. Neuroreport 13, 849–852 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.Z. was supported with a grant from the Michael J. Fox Foundation and the MIUR-FIRB project on Protein Folding and Aggregation: Metal and Biomolecules in Protein Conformational Diseases. M.L.B. was supported by the National Institutes of Health (NIH) Pathway to Independence Award. This work was also supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Block.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

Huntington's disease

multiple sclerosis

Parkinson's disease

Pick's disease

Glossary

Pattern recognition receptors

(PRRs). Receptors that bind to molecular patterns found in pathogens. Examples include the mannose receptor, which binds to terminally mannosylated and polymannosylated compounds, and Toll-like receptors, which are activated by various microbial products such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA.

Microgliosis

The generalized microglial response to tissue damage that can be either beneficial or detrimental. The negative and progressive response is also referred to as reactive microgliosis.

MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). A contamination product from incorrect synthesis of the abused opiate drug, 1-methyl-4-phenyl-4-propionoxypiperidine. In the brain, MPTP is converted to its active metabolite MPP+ (1methyl-4-phenylpyridinium ion), which is selectively toxic to dopaminergic neurons and results in rapid development of Parkinson's disease symptoms in humans and animals.

Lipopolysaccharide

(LPS). An endotoxin that is a complex macromolecule containing a polysaccharide covalently linked to a unique lipid structure, termed lipid A. All gram-negative bacteria synthesize LPS, which is a main constituent of their outer cell membrane.

Endotoxemia

A condition in which endotoxin (a toxin component of the cell wall of gram-negative bacteria that is only released on destruction of the bacterial cell) accesses the blood stream to induce systemic inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, M., Zecca, L. & Hong, JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57–69 (2007). https://doi.org/10.1038/nrn2038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing