Key Points
-
Axonal transport delivers proteins, lipids, mRNA and mitochondria to the distal synapse and clears recycled or misfolded proteins. Such transport is involved in neurotransmission, neural trophic signalling and stress insult responses.
-
Cargoes are conveyed along the microtubule tracks in axons by motor proteins.
-
Disturbances in axonal transport are key pathological events that contribute to neurodegeneration in Alzheimer's disease, polyglutamine diseases, hereditary spastic paraplegia, CharcotâMarieâTooth disease, amyotrophic lateral sclerosis and Parkinson's disease.
-
The identification of mutations in genes encoding motor proteins in patients with neurodegenerative diseases strongly supports the view that defective intracellular transport can directly trigger neuron degeneration.
-
Axonal transport deficits might arise through various mechanisms, including defects in cytoskeletal organization, impairment of motor protein attachment to microtubules, altered kinase activities, destabilization of motorâcargo binding and/or mitochondrial energetic breakdown.
-
Autophagy and RNA metabolism might also interfere with the efficiency of axonal transport.
Abstract
The intracellular transport of organelles along an axon is crucial for the maintenance and function of a neuron. Anterograde axonal transport has a role in supplying proteins and lipids to the distal synapse and mitochondria for local energy requirements, whereas retrograde transport is involved in the clearance of misfolded and aggregated proteins from the axon and the intracellular transport of distal trophic signals to the soma. Axonal transport can be affected by alterations to various components of the transport machinery. Here, we review the current state of knowledge about axonal transport defects that might contribute to the pathogenesis of particular neurodegenerative diseases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Perlson, E., Maday, S., Fu, M. M., Moughamian, A. J. & Holzbaur, E. L. Retrograde axonal transport: pathways to cell death? Trends Neurosci. 33, 335â344 (2010).
Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849â6861 (2000).
Wang, L., Ho, C. L., Sun, D., Liem, R. K. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol. 2, 137â141 (2000). References 2 and 3 show that the slow axonal transport rate of neurofilaments is the result of rapid movements and prolonged pauses.
Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407â417 (2012).
Millecamps, S., Gowing, G., Corti, O., Mallet, J. & Julien, J. P. Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J. Neurosci. 27, 4947â4956 (2007). This study shows that the axonal transport rate of cytoskeleton components in vivo depends on the density of the stationary network in the axons.
Perrot, R. & Julien, J. P. Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J. 23, 3213â3225 (2009). This study demonstrates that changes in the stoichiometry of intermediate filaments can provoke defects of fast axonal transport of organelles like mitochondria.
Lasek, R. J., Garner, J. A. & Brady, S. T. Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212sâ221s (1984).
Xia, C. H. et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55â66 (2003). This study analyses the consequences of kinesin disruption in mice and provides evidence for a role of kinesin in neurofilament transport.
Uchida, A., Alami, N. H. & Brown, A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol. Biol. Cell 20, 4997â5006 (2009).
Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610â638 (2010).
Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089â1118 (2008).
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166â2172 (2006).
Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959â970 (2001).
Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83â87 (2002).
Eschbach, J. & Dupuis, L. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 130, 348â363 (2011).
Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759â779 (2004).
Hammer, J. A. & Sellers, J. R. Walking to work: roles for class V myosins as cargo transporters. Nature Rev. Mol. Cell Biol. 13, 13â26 (2012).
Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267â270 (1999).
Cao, T. T., Chang, W., Masters, S. E. & Mooseker, M. S. Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol. Biol. Cell 15, 151â161 (2004).
Rao, M. V. et al. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279â290 (2002).
Rao, M. V. et al. The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE 6, e17087 (2011).
Lalli, G., Gschmeissner, S. & Schiavo, G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J. Cell Sci. 116, 4639â4650 (2003).
Ali, M. Y. et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl Acad. Sci. USA 104, 4332â4336 (2007).
Lee, K. D. & Hollenbeck, P. J. Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600â5605 (1995).
Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281â293 (2002). This study documents the mechanism of kinesin regulation by GSK3.
Cross, D. A. et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett. 406, 211â215 (1997).
Cook, D. et al. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 15, 4526â4536 (1996).
Ivaska, J. et al. Integrin α2β1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3β. Mol. Cell. Biol. 22, 1352â1359 (2002).
Ratner, N., Bloom, G. S. & Brady, S. T. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717â7726 (1998).
Morfini, G. et al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 23, 2235â2245 (2004).
Ackerley, S. et al. Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J. Cell Biol. 161, 489â495 (2003).
Shea, T. B. et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J. Cell Sci. 117, 933â941 (2004).
Jung, C. et al. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res. Mol. Brain Res. 141, 151â155 (2005).
Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086â1089 (2008). This report demonstrates that tau detaches kinesin from microtubules and reverses the direction of dynein transport.
Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87â92 (2007).
McVicker, D. P., Chrin, L. R. & Berger, C. L. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. J. Biol. Chem. 286, 42873â42880 (2011).
Yuan, A., Kumar, A., Peterhoff, C., Duff, K. & Nixon, R. A. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J. Neurosci. 28, 1682â1687 (2008).
Encalada, S. E., Szpankowski, L., Xia, C. H. & Goldstein, L. S. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144, 551â565 (2011).
Hardy, J. A hundred years of Alzheimer's disease research. Neuron 52, 3â13 (2006).
Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282â1288 (2005).
Salehi, A. et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29â42 (2006).
Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23, 4499â4508 (2003).
Lazarov, O. et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 27, 7011â7020 (2007).
Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751â762 (1999).
Zhang, B. et al. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J. Neurosci. 24, 4657â4667 (2004). References 40â45 support a role for early axonal transport deficits in the pathophysiology observed in rodent models of Alzheimer's disease.
Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643â648 (2001).
Lazarov, O. et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 25, 2386â2395 (2005).
Goldsbury, C. et al. Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-β peptides. Traffic 7, 873â888 (2006).
Hiruma, H., Katakura, T., Takahashi, S., Ichikawa, T. & Kawakami, T. Glutamate and amyloid β-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J. Neurosci. 23, 8967â8977 (2003).
Rui, Y., Tiwari, P., Xie, Z. & Zheng, J. Q. Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J. Neurosci. 26, 10480â10487 (2006).
Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T. & Silverman, M. A. Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J. Neurosci. 30, 9166â9171 (2010).
Pigino, G. et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid β. Proc. Natl Acad. Sci. USA 106, 5907â5912 (2009).
Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051â1063 (2002).
Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896â4905 (2002).
Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143, 777â794 (1998).
Morfini, G., Pigino, G., Mizuno, N., Kikkawa, M. & Brady, S. T. Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J. Neurosci. Res. 85, 2620â2630 (2007).
LaPointe, N. E. et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87, 440â451 (2009).
Kanaan, N. M. et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J. Neurosci. 31, 9858â9868 (2011).
Duff, K. et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87â98 (2000).
Wagner, U., Utton, M., Gallo, J. M. & Miller, C. C. Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 109, 1537â1543 (1996).
Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615â622 (1999).
Hempen, B. & Brion, J. P. Reduction of acetylated α-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 55, 964â972 (1996).
Brinkman, R. R., Mezei, M. M., Theilmann, J., Almqvist, E. & Hayden, M. R. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am. J. Hum. Genet. 60, 1202â1210 (1997).
Li, H., Li, S. H., Yu, Z. X., Shelbourne, P. & Li, X. J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473â8481 (2001).
Ackerley, S. et al. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell Neurosci. 26, 354â364 (2004).
Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41â52 (2003). This study shows that expanded polyQ tracts can be inhibitors of fast axonal transport in isolated axoplasm.
Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25â40 (2003).
Lee, W. C., Yoshihara, M. & Littleton, J. T. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. Proc. Natl Acad. Sci. USA 101, 3224â3229 (2004).
Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24, 8195â8209 (2004).
McGuire, J. R., Rong, J., Li, S. H. & Li, X. J. Interaction of huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281, 3552â3559 (2006).
Engelender, S. et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6, 2205â2212 (1997).
Caviston, J. P., Ross, J. L., Antony, S. M., Tokito, M. & Holzbaur, E. L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl Acad. Sci. USA 104, 10045â10050 (2007).
Caviston, J. P., Zajac, A. L., Tokito, M. & Holzbaur, E. L. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol. Biol. Cell 22, 478â492 (2011).
Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127â138 (2004).
Twelvetrees, A. E. et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65, 53â65 (2010).
Colin, E. et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 27, 2124â2134 (2008).
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834â840 (2009).
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571â3583 (2007).
Bobrowska, A., Paganetti, P., Matthias, P. & Bates, G. P. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS ONE 6, e20696 (2011).
Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282â40292 (2005).
Morfini, G. A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neurosci. 12, 864â871 (2009). This study identifies JNK3 as a critical mediator for the polyQ HTT-induced inhibition of axonal transport.
Piccioni, F. et al. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 16, 1418â1420 (2002).
Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nature Neurosci. 9, 907â916 (2006).
Chevalier-Larsen, E. S. et al. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24, 4778â4786 (2004).
Katsuno, M. et al. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26, 12106â12117 (2006).
Malik, B. et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 20, 1776â1786 (2011).
Stevanin, G., Ruberg, M. & Brice, A. Recent advances in the genetics of spastic paraplegias. Curr. Neurol. Neurosci. Rep. 8, 198â210 (2008).
Dion, P. A., Daoud, H. & Rouleau, G. A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nature Rev. Genet. 10, 769â782 (2009).
Beetz, C. et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology 67, 1926â1930 (2006).
Tarrade, A. et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet. 15, 3544â3558 (2006).
Roll-Mecak, A. & Vale, R. D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363â367 (2008).
Salinas, S. et al. Human spastin has multiple microtubule-related functions. J. Neurochem. 95, 1411â1420 (2005).
McDermott, C. J. et al. Hereditary spastic paraparesis: disrupted intracellular transport associated with spastin mutation. Ann. Neurol. 54, 748â759 (2003).
Solowska, J. M. et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J. Neurosci. 28, 2147â2157 (2008).
Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19â38 (2005).
Stevanin, G. et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131, 772â784 (2008).
Hehr, U. et al. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann. Neurol. 62, 656â665 (2007).
Ebbing, B. et al. Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity. Hum. Mol. Genet. 17, 1245â1252 (2008).
Goizet, C. et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum. Mutat. 30, e376âe385 (2009).
Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231â242 (2004).
Zuchner, S. & Vance, J. M. Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nature Clin. Pract. Neurol. 2, 45â53 (2006).
Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause CharcotâMarieâTooth neuropathy type 2A. Nature Genet. 36, 449â451 (2004).
Detmer, S. A., Vande Velde, C., Cleveland, D. W. & Chan, D. C. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of CharcotâMarieâTooth type 2A. Hum. Mol. Genet. 17, 367â375 (2008).
Cartoni, R. et al. Expression of mitofusin 2(R94Q) in a transgenic mouse leads to CharcotâMarieâTooth neuropathy type 2A. Brain 133, 1460â1469 (2010).
Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of CharcotâMarieâTooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422â430 (2007).
Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232â4240 (2010).
Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189â200 (2003).
Guillet, V. et al. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618â1627 (2011).
Deinhardt, K. et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293â305 (2006).
Brownlees, J. et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum. Mol. Genet. 11, 2837â2844 (2002).
Perez-Olle, R. et al. Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J. Neurochem. 93, 861â874 (2005).
Ackerley, S. et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum. Mol. Genet. 15, 347â354 (2006).
Zhai, J., Lin, H., Julien, J. P. & Schlaepfer, W. W. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to CharcotâMarieâTooth disease-linked mutations in NFL and HSPB1. Hum. Mol. Genet. 16, 3103â3116 (2007).
d'Ydewalle, C. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced CharcotâMarieâTooth disease. Nature Med. 17, 968â974 (2011). This report shows the beneficial effect of a pharmacological approach (inhibition of HDAC6) to correct axonal transport defects and rescue the motor neuropathy in CMT mice.
Weedon, M. N. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal CharcotâMarieâTooth disease. Am. J. Hum. Genet. 89, 308â312 (2011).
Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808â812 (2003).
Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA 107, 20523â20528 (2010).
Chen, X. J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J. Neurosci. 27, 14515â14524 (2007).
Sasaki, S., Maruyama, S., Yamane, K., Sakuma, H. & Takeishi, M. Ultrastructure of swollen proximal axons of anterior horn neurons in motor neuron disease. J. Neurol. Sci. 97, 233â240 (1990).
Corbo, M. & Hays, A. P. Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J. Neuropathol. Exp. Neurol. 51, 531â537 (1992).
Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464â1468 (1992).
Ackerley, S. et al. Glutamate slows axonal transport of neurofilaments in transfected neurons. J. Cell Biol. 150, 165â176 (2000). This study shows that excitotoxic insults can cause axonal transport defects that are responsible for neurofilament accumulation in neurodegenerative disease.
Brownlees, J. et al. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J. Cell Sci. 113, 401â407 (2000).
De Vos, K. et al. Tumor necrosis factor induces hyperphosphorylation of kinesin light chain and inhibits kinesin-mediated transport of mitochondria. J. Cell Biol. 149, 1207â1214 (2000).
Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757â1761 (1994).
Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157â164 (1999).
Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967â3970 (1998).
Gros-Louis, F. et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J. Biol. Chem. 279, 45951â45956 (2004).
Lariviere, R. C. & Julien, J. P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131â148 (2004).
Collard, J. F., Cote, F. & Julien, J. P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61â64 (1995). This study reports that overexpression of NFH can lead to neurofilament accumulations and axonal transport defects.
Millecamps, S., Robertson, J., Lariviere, R., Mallet, J. & Julien, J. P. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J. Neurochem. 98, 926â938 (2006). This paper shows that peripherin overexpression can cause axonal protein aggregates, defective axonal transport and motor neuron death during ageing.
Swarup, V. et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134, 2610â2626 (2011). This paper reports that upregulation of TDP43 species in vivo can alter the stoichiometry of neuronal intermediate filaments with ensuing formation of aggregates and axonal atrophy.
Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168â182 (2009).
Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772â1775 (1994).
Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327â338 (1997).
Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105â1116 (1995).
Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50â56 (1999).
Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307â1315 (1997).
Tortarolo, M. et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell Neurosci. 23, 180â192 (2003).
Nguyen, M. D., Lariviere, R. C. & Julien, J. P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135â147 (2001).
Bosco, D. A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci. 13, 1396â1403 (2010). This study shows that the detrimental effect of mutant SOD1 on kinesin-based axonal transport was due to p38 activation and could be negated through exposure to antibodies against misfolded SOD1.
De Vos, K. J. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 2720â2728 (2007).
Vande Velde, C. et al. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS ONE 6, e22031 (2011).
Zhu, Y. B. & Sheng, Z. H. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J. Biol. Chem. 286, 23432â23440 (2011).
Marinkovic, P. et al. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 4296â4301 (2012). This study demonstrates that transport deficits do not necessarily cause axon degeneration in a mouse model of ALS and that disturbances of organelle transport are not a necessary step in the emergence of motor neuron degeneration.
Kieran, D. et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol. 169, 561â567 (2005).
LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715â727 (2002).
Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455â456 (2003). This study detected mutations in the gene encoding the dynactin subunit that cause lower motor neuron disease, strongly supporting the view that dysfunction of dynein-mediated axonal transport can cause neurodegeneration.
Lai, C. et al. The G59S mutation in p150glued causes dysfunction of dynactin in mice. J. Neurosci. 27, 13982â13990 (2007).
Laird, F. M. et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci. 28, 1997â2005 (2008).
Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum. Mol. Genet. 17, 1946â1955 (2008).
Teuling, E. et al. A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum. Mol. Genet. 17, 2849â2862 (2008).
Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671â1687 (2003).
Devon, R. S. et al. Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc. Natl Acad. Sci. USA 103, 9595â9600 (2006).
Gros-Louis, F. et al. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Hum. Mol. Genet. 17, 2691â2702 (2008).
Teuling, E. et al. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 27, 9801â9815 (2007).
Amarilio, R., Ramachandran, S., Sabanay, H. & Lev, S. Differential regulation of endoplasmic reticulum structure through VAPâNir protein interaction. J. Biol. Chem. 280, 5934â5944 (2005).
Saha, A. R. et al. Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117, 1017â1024 (2004).
Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature Rev. Neurosci. 7, 207â219 (2006).
Morfini, G. et al. 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc. Natl Acad. Sci. USA 104, 2442â2447 (2007).
Arnold, B., Cassady, S. J., VanLaar, V. S. & Berman, S. B. Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol. Dis. 41, 189â200 (2011).
Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nature Genet. 41, 163â165 (2009). Coupled with reference 148, this study shows that dynactin mutations can give rise to clinically and pathologically distinct neurodegenerative disorders (lower motor neuron disease or Perry syndrome), indicating that subtle differences in axonal transport function could selectively affect distinct neuronal populations.
Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain 135, 2058â2073 (2012). This study strongly supports the notion that neurodegeneration involves axonal transport disruption in Parkinson's disease.
Millecamps, S. & Julien, J. P. in Intermediate Filaments Cytoskeleton (Methods In Cell Biology) Vol. 78 (eds Omary, M. B. & Coulombe, P. A.) 555â571 (2004).
Peethumnongsin, E. et al. Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J. Neurosci. 30, 13409â13418 (2010). This study documents an Alzheimer's disease mouse model in which the coupling of conditional knockout of presenilin and transgenic expression of wild-type tau protein have additive defects on axonal transport impairment and neurodegeneration.
Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J. Neurosci. 31, 7817â7830 (2011). This study proposes that lysosomal proteolysis is the basis for the axonal transport deficits associated with Alzheimer's disease.
Wood, H. Amyotrophic lateral sclerosis: a hexanucleotide repeat expansion in C9ORF72 links amyotrophic lateral sclerosis and frontotemporal dementia. Nature Rev. Neurol. 7, 595 (2011).
Swarup, V. et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429â2447 (2011). This paper proposes a new pathogenic pathway in ALS based on hyperactivation of NF-κB.
Vanderweyde, T. et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32, 8270â8283 (2012).
Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E. M. & Mandelkow, E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399, 344â349 (1996).
Savas, J. N. et al. A role for huntington disease protein in dendritic RNA granules. J. Biol. Chem. 285, 13142â13153 (2010).
Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P. Fast axonal transport in squid giant axon. Science 218, 1127â1129 (1982).
Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science 218, 1129â1131 (1982).
Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W. & Lichtman, J. W. Imaging axonal transport of mitochondria in vivo. Nature Methods 4, 559â561 (2007).
Taylor, A. M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2, 599â605 (2005).
Kim, J., Choi, I. Y., Michaelis, M. L. & Lee, P. Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI. Neuroimage 56, 1286â1292 (2011).
Muslimov, I. A., Titmus, M., Koenig, E. & Tiedge, H. Transport of neuronal BC1 RNA in mauthner axons. J. Neurosci. 22, 4293â4301 (2002).
Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. & LaVail, J. H. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146â8150 (2000).
Mitsumoto, H., Ferut, A. L., Kurahashi, K. & McQuarrie, I. G. Impairment of retrograde axonal transport in wobbler mouse motor neuron disease. Muscle Nerve 13, 121â126 (1990).
Acknowledgements
The work carried out by J.-P.J. is supported by the Canadian Institutes of Health Research (CIHR), the ALS Society of Canada, the PrioNet Canada, the Fondation André-Delambre, the Muscular Dystrophy Association (USA) and the Robert Packard Center for ALS Research at Johns Hopkins. The work of S.M. is supported by the Association pour la Recherche sur la Sclérose Latérale Amyotrophique et autres maladies du motoneurone (ARSla), the Association Française contre les Myopathies (AFM) and the Fédération pour la Recherche sur le Cerveau (FRC).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Neurofilaments
-
Neurofilaments are components of the neuronal cytoskeleton. They are intermediate filaments with a diameter of 10 nm and are composed of three subunits: the neurofilament light, medium and heavy chains.
Rights and permissions
About this article
Cite this article
Millecamps, S., Julien, JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14, 161â176 (2013). https://doi.org/10.1038/nrn3380
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3380