Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Axonal transport deficits and neurodegenerative diseases

Key Points

  • Axonal transport delivers proteins, lipids, mRNA and mitochondria to the distal synapse and clears recycled or misfolded proteins. Such transport is involved in neurotransmission, neural trophic signalling and stress insult responses.

  • Cargoes are conveyed along the microtubule tracks in axons by motor proteins.

  • Disturbances in axonal transport are key pathological events that contribute to neurodegeneration in Alzheimer's disease, polyglutamine diseases, hereditary spastic paraplegia, Charcot–Marie–Tooth disease, amyotrophic lateral sclerosis and Parkinson's disease.

  • The identification of mutations in genes encoding motor proteins in patients with neurodegenerative diseases strongly supports the view that defective intracellular transport can directly trigger neuron degeneration.

  • Axonal transport deficits might arise through various mechanisms, including defects in cytoskeletal organization, impairment of motor protein attachment to microtubules, altered kinase activities, destabilization of motor–cargo binding and/or mitochondrial energetic breakdown.

  • Autophagy and RNA metabolism might also interfere with the efficiency of axonal transport.

Abstract

The intracellular transport of organelles along an axon is crucial for the maintenance and function of a neuron. Anterograde axonal transport has a role in supplying proteins and lipids to the distal synapse and mitochondria for local energy requirements, whereas retrograde transport is involved in the clearance of misfolded and aggregated proteins from the axon and the intracellular transport of distal trophic signals to the soma. Axonal transport can be affected by alterations to various components of the transport machinery. Here, we review the current state of knowledge about axonal transport defects that might contribute to the pathogenesis of particular neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of the microtubule-based axonal transport system.
Figure 2: Axonal transport damage in Alzheimer's and Huntington's diseases.
Figure 3: Axonal transport damage in motor neuron diseases and peripheral axonopathies.

Similar content being viewed by others

References

  1. Perlson, E., Maday, S., Fu, M. M., Moughamian, A. J. & Holzbaur, E. L. Retrograde axonal transport: pathways to cell death? Trends Neurosci. 33, 335–344 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849–6861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, L., Ho, C. L., Sun, D., Liem, R. K. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol. 2, 137–141 (2000). References 2 and 3 show that the slow axonal transport rate of neurofilaments is the result of rapid movements and prolonged pauses.

    Article  CAS  PubMed  Google Scholar 

  4. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Millecamps, S., Gowing, G., Corti, O., Mallet, J. & Julien, J. P. Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J. Neurosci. 27, 4947–4956 (2007). This study shows that the axonal transport rate of cytoskeleton components in vivo depends on the density of the stationary network in the axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perrot, R. & Julien, J. P. Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J. 23, 3213–3225 (2009). This study demonstrates that changes in the stoichiometry of intermediate filaments can provoke defects of fast axonal transport of organelles like mitochondria.

    Article  CAS  PubMed  Google Scholar 

  7. Lasek, R. J., Garner, J. A. & Brady, S. T. Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s–221s (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Xia, C. H. et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55–66 (2003). This study analyses the consequences of kinesin disruption in mice and provides evidence for a role of kinesin in neurofilament transport.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Uchida, A., Alami, N. H. & Brown, A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol. Biol. Cell 20, 4997–5006 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Eschbach, J. & Dupuis, L. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 130, 348–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hammer, J. A. & Sellers, J. R. Walking to work: roles for class V myosins as cargo transporters. Nature Rev. Mol. Cell Biol. 13, 13–26 (2012).

    Article  CAS  Google Scholar 

  18. Huang, J. D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Cao, T. T., Chang, W., Masters, S. E. & Mooseker, M. S. Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol. Biol. Cell 15, 151–161 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rao, M. V. et al. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279–290 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rao, M. V. et al. The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE 6, e17087 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lalli, G., Gschmeissner, S. & Schiavo, G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J. Cell Sci. 116, 4639–4650 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ali, M. Y. et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl Acad. Sci. USA 104, 4332–4336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, K. D. & Hollenbeck, P. J. Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600–5605 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002). This study documents the mechanism of kinesin regulation by GSK3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cross, D. A. et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett. 406, 211–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Cook, D. et al. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 15, 4526–4536 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ivaska, J. et al. Integrin α2β1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3β. Mol. Cell. Biol. 22, 1352–1359 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ratner, N., Bloom, G. S. & Brady, S. T. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717–7726 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morfini, G. et al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 23, 2235–2245 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ackerley, S. et al. Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J. Cell Biol. 161, 489–495 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shea, T. B. et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J. Cell Sci. 117, 933–941 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Jung, C. et al. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res. Mol. Brain Res. 141, 151–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008). This report demonstrates that tau detaches kinesin from microtubules and reverses the direction of dynein transport.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. McVicker, D. P., Chrin, L. R. & Berger, C. L. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. J. Biol. Chem. 286, 42873–42880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan, A., Kumar, A., Peterhoff, C., Duff, K. & Nixon, R. A. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J. Neurosci. 28, 1682–1687 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Encalada, S. E., Szpankowski, L., Xia, C. H. & Goldstein, L. S. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144, 551–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardy, J. A hundred years of Alzheimer's disease research. Neuron 52, 3–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Salehi, A. et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23, 4499–4508 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lazarov, O. et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 27, 7011–7020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, B. et al. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J. Neurosci. 24, 4657–4667 (2004). References 40–45 support a role for early axonal transport deficits in the pathophysiology observed in rodent models of Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A. & Goldstein, L. S. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414, 643–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Lazarov, O. et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 25, 2386–2395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldsbury, C. et al. Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-β peptides. Traffic 7, 873–888 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hiruma, H., Katakura, T., Takahashi, S., Ichikawa, T. & Kawakami, T. Glutamate and amyloid β-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J. Neurosci. 23, 8967–8977 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rui, Y., Tiwari, P., Xie, Z. & Zheng, J. Q. Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J. Neurosci. 26, 10480–10487 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T. & Silverman, M. A. Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J. Neurosci. 30, 9166–9171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pigino, G. et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid β. Proc. Natl Acad. Sci. USA 106, 5907–5912 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Seitz, A. et al. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 21, 4896–4905 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ebneth, A. et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143, 777–794 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Morfini, G., Pigino, G., Mizuno, N., Kikkawa, M. & Brady, S. T. Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J. Neurosci. Res. 85, 2620–2630 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. LaPointe, N. E. et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87, 440–451 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kanaan, N. M. et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J. Neurosci. 31, 9858–9868 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Duff, K. et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, U., Utton, M., Gallo, J. M. & Miller, C. C. Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 109, 1537–1543 (1996).

    CAS  PubMed  Google Scholar 

  61. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hempen, B. & Brion, J. P. Reduction of acetylated α-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 55, 964–972 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Brinkman, R. R., Mezei, M. M., Theilmann, J., Almqvist, E. & Hayden, M. R. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am. J. Hum. Genet. 60, 1202–1210 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Li, H., Li, S. H., Yu, Z. X., Shelbourne, P. & Li, X. J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473–8481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ackerley, S. et al. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell Neurosci. 26, 354–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52 (2003). This study shows that expanded polyQ tracts can be inhibitors of fast axonal transport in isolated axoplasm.

    Article  CAS  PubMed  Google Scholar 

  67. Gunawardena, S. et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, W. C., Yoshihara, M. & Littleton, J. T. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. Proc. Natl Acad. Sci. USA 101, 3224–3229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24, 8195–8209 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. McGuire, J. R., Rong, J., Li, S. H. & Li, X. J. Interaction of huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281, 3552–3559 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Engelender, S. et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6, 2205–2212 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Caviston, J. P., Ross, J. L., Antony, S. M., Tokito, M. & Holzbaur, E. L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl Acad. Sci. USA 104, 10045–10050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caviston, J. P., Zajac, A. L., Tokito, M. & Holzbaur, E. L. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol. Biol. Cell 22, 478–492 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Twelvetrees, A. E. et al. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65, 53–65 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Colin, E. et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 27, 2124–2134 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bobrowska, A., Paganetti, P., Matthias, P. & Bates, G. P. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS ONE 6, e20696 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Morfini, G. A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neurosci. 12, 864–871 (2009). This study identifies JNK3 as a critical mediator for the polyQ HTT-induced inhibition of axonal transport.

    Article  CAS  PubMed  Google Scholar 

  82. Piccioni, F. et al. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 16, 1418–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nature Neurosci. 9, 907–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Chevalier-Larsen, E. S. et al. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24, 4778–4786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Katsuno, M. et al. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26, 12106–12117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Malik, B. et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 20, 1776–1786 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Stevanin, G., Ruberg, M. & Brice, A. Recent advances in the genetics of spastic paraplegias. Curr. Neurol. Neurosci. Rep. 8, 198–210 (2008).

    Article  PubMed  Google Scholar 

  88. Dion, P. A., Daoud, H. & Rouleau, G. A. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nature Rev. Genet. 10, 769–782 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Beetz, C. et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology 67, 1926–1930 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Tarrade, A. et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet. 15, 3544–3558 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Roll-Mecak, A. & Vale, R. D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363–367 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Salinas, S. et al. Human spastin has multiple microtubule-related functions. J. Neurochem. 95, 1411–1420 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. McDermott, C. J. et al. Hereditary spastic paraparesis: disrupted intracellular transport associated with spastin mutation. Ann. Neurol. 54, 748–759 (2003).

    Article  PubMed  Google Scholar 

  94. Solowska, J. M. et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J. Neurosci. 28, 2147–2157 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Stevanin, G. et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131, 772–784 (2008).

    Article  PubMed  Google Scholar 

  97. Hehr, U. et al. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann. Neurol. 62, 656–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Ebbing, B. et al. Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity. Hum. Mol. Genet. 17, 1245–1252 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Goizet, C. et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum. Mutat. 30, e376–e385 (2009).

    Article  PubMed  Google Scholar 

  100. Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231–242 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Zuchner, S. & Vance, J. M. Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nature Clin. Pract. Neurol. 2, 45–53 (2006).

    Article  CAS  Google Scholar 

  102. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Detmer, S. A., Vande Velde, C., Cleveland, D. W. & Chan, D. C. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot–Marie–Tooth type 2A. Hum. Mol. Genet. 17, 367–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Cartoni, R. et al. Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain 133, 1460–1469 (2010).

    Article  PubMed  Google Scholar 

  105. Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of Charcot–Marie–Tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232–4240 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Guillet, V. et al. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Deinhardt, K. et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Brownlees, J. et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum. Mol. Genet. 11, 2837–2844 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Perez-Olle, R. et al. Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J. Neurochem. 93, 861–874 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Ackerley, S. et al. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum. Mol. Genet. 15, 347–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Zhai, J., Lin, H., Julien, J. P. & Schlaepfer, W. W. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot–Marie–Tooth disease-linked mutations in NFL and HSPB1. Hum. Mol. Genet. 16, 3103–3116 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. d'Ydewalle, C. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot–Marie–Tooth disease. Nature Med. 17, 968–974 (2011). This report shows the beneficial effect of a pharmacological approach (inhibition of HDAC6) to correct axonal transport defects and rescue the motor neuropathy in CMT mice.

    Article  CAS  PubMed  Google Scholar 

  115. Weedon, M. N. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA 107, 20523–20528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, X. J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sasaki, S., Maruyama, S., Yamane, K., Sakuma, H. & Takeishi, M. Ultrastructure of swollen proximal axons of anterior horn neurons in motor neuron disease. J. Neurol. Sci. 97, 233–240 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Corbo, M. & Hays, A. P. Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J. Neuropathol. Exp. Neurol. 51, 531–537 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Ackerley, S. et al. Glutamate slows axonal transport of neurofilaments in transfected neurons. J. Cell Biol. 150, 165–176 (2000). This study shows that excitotoxic insults can cause axonal transport defects that are responsible for neurofilament accumulation in neurodegenerative disease.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Brownlees, J. et al. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J. Cell Sci. 113, 401–407 (2000).

    CAS  PubMed  Google Scholar 

  124. De Vos, K. et al. Tumor necrosis factor induces hyperphosphorylation of kinesin light chain and inhibits kinesin-mediated transport of mitochondria. J. Cell Biol. 149, 1207–1214 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967–3970 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Gros-Louis, F. et al. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J. Biol. Chem. 279, 45951–45956 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lariviere, R. C. & Julien, J. P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Collard, J. F., Cote, F. & Julien, J. P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64 (1995). This study reports that overexpression of NFH can lead to neurofilament accumulations and axonal transport defects.

    Article  CAS  PubMed  Google Scholar 

  131. Millecamps, S., Robertson, J., Lariviere, R., Mallet, J. & Julien, J. P. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J. Neurochem. 98, 926–938 (2006). This paper shows that peripherin overexpression can cause axonal protein aggregates, defective axonal transport and motor neuron death during ageing.

    Article  CAS  PubMed  Google Scholar 

  132. Swarup, V. et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134, 2610–2626 (2011). This paper reports that upregulation of TDP43 species in vivo can alter the stoichiometry of neuronal intermediate filaments with ensuing formation of aggregates and axonal atrophy.

    Article  PubMed  Google Scholar 

  133. Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Tortarolo, M. et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell Neurosci. 23, 180–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Nguyen, M. D., Lariviere, R. C. & Julien, J. P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Bosco, D. A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci. 13, 1396–1403 (2010). This study shows that the detrimental effect of mutant SOD1 on kinesin-based axonal transport was due to p38 activation and could be negated through exposure to antibodies against misfolded SOD1.

    Article  CAS  PubMed  Google Scholar 

  142. De Vos, K. J. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 2720–2728 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Vande Velde, C. et al. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS ONE 6, e22031 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Zhu, Y. B. & Sheng, Z. H. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J. Biol. Chem. 286, 23432–23440 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Marinkovic, P. et al. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 4296–4301 (2012). This study demonstrates that transport deficits do not necessarily cause axon degeneration in a mouse model of ALS and that disturbances of organelle transport are not a necessary step in the emergence of motor neuron degeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kieran, D. et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol. 169, 561–567 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003). This study detected mutations in the gene encoding the dynactin subunit that cause lower motor neuron disease, strongly supporting the view that dysfunction of dynein-mediated axonal transport can cause neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  149. Lai, C. et al. The G59S mutation in p150glued causes dysfunction of dynactin in mice. J. Neurosci. 27, 13982–13990 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Laird, F. M. et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci. 28, 1997–2005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum. Mol. Genet. 17, 1946–1955 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Teuling, E. et al. A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum. Mol. Genet. 17, 2849–2862 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671–1687 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Devon, R. S. et al. Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc. Natl Acad. Sci. USA 103, 9595–9600 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Gros-Louis, F. et al. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish. Hum. Mol. Genet. 17, 2691–2702 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Teuling, E. et al. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 27, 9801–9815 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Amarilio, R., Ramachandran, S., Sabanay, H. & Lev, S. Differential regulation of endoplasmic reticulum structure through VAP–Nir protein interaction. J. Biol. Chem. 280, 5934–5944 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Saha, A. R. et al. Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117, 1017–1024 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature Rev. Neurosci. 7, 207–219 (2006).

    Article  CAS  Google Scholar 

  160. Morfini, G. et al. 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc. Natl Acad. Sci. USA 104, 2442–2447 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Arnold, B., Cassady, S. J., VanLaar, V. S. & Berman, S. B. Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol. Dis. 41, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nature Genet. 41, 163–165 (2009). Coupled with reference 148, this study shows that dynactin mutations can give rise to clinically and pathologically distinct neurodegenerative disorders (lower motor neuron disease or Perry syndrome), indicating that subtle differences in axonal transport function could selectively affect distinct neuronal populations.

    Article  CAS  PubMed  Google Scholar 

  163. Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. Brain 135, 2058–2073 (2012). This study strongly supports the notion that neurodegeneration involves axonal transport disruption in Parkinson's disease.

    Article  PubMed Central  PubMed  Google Scholar 

  164. Millecamps, S. & Julien, J. P. in Intermediate Filaments Cytoskeleton (Methods In Cell Biology) Vol. 78 (eds Omary, M. B. & Coulombe, P. A.) 555–571 (2004).

    Book  Google Scholar 

  165. Peethumnongsin, E. et al. Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J. Neurosci. 30, 13409–13418 (2010). This study documents an Alzheimer's disease mouse model in which the coupling of conditional knockout of presenilin and transgenic expression of wild-type tau protein have additive defects on axonal transport impairment and neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011). This study proposes that lysosomal proteolysis is the basis for the axonal transport deficits associated with Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wood, H. Amyotrophic lateral sclerosis: a hexanucleotide repeat expansion in C9ORF72 links amyotrophic lateral sclerosis and frontotemporal dementia. Nature Rev. Neurol. 7, 595 (2011).

    Article  Google Scholar 

  168. Swarup, V. et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447 (2011). This paper proposes a new pathogenic pathway in ALS based on hyperactivation of NF-κB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vanderweyde, T. et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32, 8270–8283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E. M. & Mandelkow, E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399, 344–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Savas, J. N. et al. A role for huntington disease protein in dendritic RNA granules. J. Biol. Chem. 285, 13142–13153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P. Fast axonal transport in squid giant axon. Science 218, 1127–1129 (1982).

    Article  CAS  PubMed  Google Scholar 

  173. Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science 218, 1129–1131 (1982).

    Article  CAS  PubMed  Google Scholar 

  174. Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W. & Lichtman, J. W. Imaging axonal transport of mitochondria in vivo. Nature Methods 4, 559–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Taylor, A. M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2, 599–605 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Kim, J., Choi, I. Y., Michaelis, M. L. & Lee, P. Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI. Neuroimage 56, 1286–1292 (2011).

    Article  PubMed  Google Scholar 

  177. Muslimov, I. A., Titmus, M., Koenig, E. & Tiedge, H. Transport of neuronal BC1 RNA in mauthner axons. J. Neurosci. 22, 4293–4301 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. & LaVail, J. H. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146–8150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mitsumoto, H., Ferut, A. L., Kurahashi, K. & McQuarrie, I. G. Impairment of retrograde axonal transport in wobbler mouse motor neuron disease. Muscle Nerve 13, 121–126 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work carried out by J.-P.J. is supported by the Canadian Institutes of Health Research (CIHR), the ALS Society of Canada, the PrioNet Canada, the Fondation André-Delambre, the Muscular Dystrophy Association (USA) and the Robert Packard Center for ALS Research at Johns Hopkins. The work of S.M. is supported by the Association pour la Recherche sur la Sclérose Latérale Amyotrophique et autres maladies du motoneurone (ARSla), the Association Française contre les Myopathies (AFM) and the Fédération pour la Recherche sur le Cerveau (FRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Julien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jean-Pierre Julien's homepage

Glossary

Neurofilaments

Neurofilaments are components of the neuronal cytoskeleton. They are intermediate filaments with a diameter of 10 nm and are composed of three subunits: the neurofilament light, medium and heavy chains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millecamps, S., Julien, JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14, 161–176 (2013). https://doi.org/10.1038/nrn3380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3380

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing