Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuroscience of mindfulness meditation

An Erratum to this article was published on 10 April 2015

Key Points

  • It is proposed that the mechanism through which mindfulness meditation exerts its effects is a process of enhanced self-regulation, including attention control, emotion regulation and self-awareness.

  • Research on mindfulness meditation faces a number of important challenges in study design that limit the interpretation of existing studies.

  • A number of changes in brain structure have been related to mindfulness meditation.

  • Mindfulness practice enhances attention. The anterior cingulate cortex is the region associated with attention in which changes in activity and/or structure in response to mindfulness meditation are most consistently reported.

  • Mindfulness practice improves emotion regulation and reduces stress. Fronto-limbic networks involved in these processes show various patterns of engagement by mindfulness meditation.

  • Meditation practice has the potential to affect self-referential processing and improve present-moment awareness. The default mode networks — including the midline prefrontal cortex and posterior cingulate cortex, which support self-awareness — could be altered following mindfulness training.

  • Mindfulness meditation has potential for the treatment of clinical disorders and might facilitate the cultivation of a healthy mind and increased well-being.

  • Future research into mindfulness meditation should use randomized and actively controlled longitudinal studies with large sample sizes to validate previous findings.

  • The effects of mindfulness practice on neural structure and function need to be linked to behavioural performance, such as cognitive, affective and social functioning, in future research.

  • The complex mental state of mindfulness is likely to be supported by the large-scale brain networks; future work should take this into account rather than being restricted to activations in single brain areas.

Abstract

Research over the past two decades broadly supports the claim that mindfulness meditation — practiced widely for the reduction of stress and promotion of health — exerts beneficial effects on physical and mental health, and cognitive performance. Recent neuroimaging studies have begun to uncover the brain areas and networks that mediate these positive effects. However, the underlying neural mechanisms remain unclear, and it is apparent that more methodologically rigorous studies are required if we are to gain a full understanding of the neuronal and molecular bases of the changes in the brain that accompany mindfulness meditation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain regions involved in the components of mindfulness meditation.

Similar content being viewed by others

References

  1. Ospina, M. B. et al. Meditation practices for health: state of the research. Evid. Rep. Technol. Assess. (Full Rep.) 155, 1–263 (2007).

    Google Scholar 

  2. Tang, Y.-Y. & Posner, M. I. Theory and method in mindfulness neuroscience. Soc. Cogn. Affect. Neurosci. 8, 118–120 (2013).

    Article  PubMed  Google Scholar 

  3. Hart, W. The Art of Living: Vipassana Meditation (Harper and Row, 1987).

    Google Scholar 

  4. Ivanovski, B. & Malhi, G. S. The psychological and neurophysiological concomitants of mindfulness forms of meditation. Acta Neuropsychiatr. 19, 76–91 (2007).

    Article  PubMed  Google Scholar 

  5. Chiesa, A. & Malinowski, P. Mindfulness-based approaches: are they all the same? J. Clin. Psychol. 67, 404–424 (2011).

    Article  PubMed  Google Scholar 

  6. Baer, R. A. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin. Psychol. Sci. Practice 10, 125–143 (2003).

    Article  Google Scholar 

  7. Grossman, P. Defining mindfulness by how poorly I think I pay attention during everyday awareness and other intractable problems for psychology's (re)invention of mindfulness: comment on Brown et al. Psychol. Assess. 23, 1034–1040 (2011).

    Article  PubMed  Google Scholar 

  8. Kabat-Zinn, J. Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain, and Illness (Delta Trade Paperbacks, 1990).

    Google Scholar 

  9. Lutz, A., Slagter, H. A., Dunne, J. D. & Davidson, R. J. Attention regulation and monitoring in meditation. Trends Cogn. Sci. 12, 163–169 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hölzel, B. K. et al. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect. Psychol. Sci. 6, 537–559 (2011). A review of the mechanisms of meditation.

    Article  PubMed  Google Scholar 

  11. Tang, Y.Y., Rothbart, M. K. & Posner, M. I. Neural correlates of establishing, maintaining and switching brain states. Trends Cogn. Sci. 16, 330–337 (2012). A review of the mechanisms of brain states associated with mental training.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z. & Goolkasian, P. Mindfulness meditation improves cognition: evidence of brief mental training. Conscious. Cogn. 19, 597–605 (2010).

    Article  PubMed  Google Scholar 

  13. Ding, X. et al. Short-term meditation modulates brain activity of insight evoked with solution cue. Soc. Cogn. Affect. Neurosci. 10, 43–49 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tang, Y. Y. et al. Short-term meditation training improves attention and self-regulation. Proc. Natl Acad. Sci. USA 104, 17152–17156 (2007). The first longitudinal, randomized study to document that brief training improves executive attention, mood and immune function, and reduces levels of stress hormones.

    Article  PubMed  Google Scholar 

  15. Manna, A. et al. Neural correlates of focused attention and cognitive monitoring in meditation. Brain Res. Bull. 82, 46–56 (2010).

    Article  PubMed  Google Scholar 

  16. Tomasino, B., Fregona, S., Skrap, M. & Fabbro, F. Meditation-related activations are modulated by the practices needed to obtain it and by the expertise: an ALE meta-analysis study. Front. Hum. Neurosci. 6, 346 (2012).

    PubMed  Google Scholar 

  17. Fox, K. C. et al. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci. Biobehav. Rev. 43, 48–73 (2014). A review of structural alterations in the brain associated with meditation.

    Article  PubMed  Google Scholar 

  18. Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B. & Davidson, R. J. Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl Acad. Sci. USA 104, 11483–11488 (2007). One of the first cross-sectional studies to document the neural correlates of focused meditation.

    Article  CAS  PubMed  Google Scholar 

  19. Davidson, R. J. Empirical explorations of mindfulness: conceptual and methodological conundrums. Emotion 10, 8–11 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. MacCoon, D. G. et al. The validation of an active control intervention for Mindfulness Based Stress Reduction (MBSR). Behav. Res. Ther. 50, 3–12 (2012). One of the first studies to validate the active control conditions in mindfulness training.

    Article  PubMed  Google Scholar 

  21. Rosenkranz, M. A. et al. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav. Immun. 27, 174–184 (2013).

    Article  PubMed  Google Scholar 

  22. MacCoon, D. G., MacLean, K. A., Davidson, R. J., Saron, C. D. & Lutz, A. No sustained attention differences in a longitudinal randomized trial comparing mindfulness based stress reduction versus active control. PLoS ONE 9, e97551 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tang, Y. Y. et al. Central and autonomic nervous system interaction is altered by short-term meditation. Proc. Natl Acad. Sci. USA 106, 8865–8870 (2009).

    Article  PubMed  Google Scholar 

  24. Erisman, S. M. & Roemer, L. The effects of experimentally induced mindfulness on emotional responding to film clips. Emotion 10, 72–82 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leiberg, S., Klimecki, O. & Singer, T. Short-term compassion training increases prosocial behaviour in a newly developed prosocial game. PLoS ONE 6, e17798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoge, E. A. et al. Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: effects on anxiety and stress reactivity. J. Clin. Psychiatry 74, 786–792 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang, Y. Y., Yang, L., Leve, L. D. & Harold, G. T. Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: advances within the field of developmental neuroscience. Child Dev. Perspect. 6, 361–366 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Zeidan, F., Johnson, S. K., Gordon, N. S. & Goolkasian, P. Effects of brief and sham mindfulness meditation on mood and cardiovascular variables. J. Altern. Complement. Med. 16, 867–873 (2010).

    Article  PubMed  Google Scholar 

  29. Goldin, P., Ziv, M., Jazaieri, H., Hahn, K. & Gross, J. J. MBSR versus aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs. Soc. Cogn. Affect. Neurosci. 8, 65–72 (2013). One of the first randomized mindfulness studies to document the neural mechanisms in social anxiety.

    Article  PubMed  Google Scholar 

  30. Zeidan, F. et al. Brain mechanisms supporting the modulation of pain by mindfulness meditation. J. Neurosci. 31, 5540–5548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hölzel, B. K. et al. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc. Cogn. Affect. Neurosci. 3, 55–61 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lazar, S. W. et al. Meditation experience is associated with increased cortical thickness. Neuroreport 16, 1893–1897 (2005). The first cross-sectional study to document that meditation is associated with structural changes in the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vestergaard-Poulsen, P. et al. Long-term meditation is associated with increased grey matter density in the brain stem. Neuroreport 20, 170–174 (2009).

    Article  PubMed  Google Scholar 

  34. Pagnoni, G. & Cekic, M. Age effects on grey matter volume and attentional performance in Zen meditation. Neurobiol. Aging 28, 1623–1627 (2007).

    Article  PubMed  Google Scholar 

  35. Grant, J. A., Courtemanche, J. & Rainville, P. A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain 152, 150–156 (2010).

    Article  PubMed  Google Scholar 

  36. Grant, J. A. et al. Cortical thickness, mental absorption and meditative practice: possible implications for disorders of attention. Biol. Psychol. 92, 275–281 (2013).

    Article  PubMed  Google Scholar 

  37. Fayed, N. et al. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study. PLoS ONE 8, e58476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang, Y. Y. et al. Short-term meditation induces white matter changes in the anterior cingulate. Proc. Natl Acad. Sci. USA 107, 15649–15652 (2010). The first longitudinal study to document that brief mindfulness training induces white-matter changes.

    Article  PubMed  Google Scholar 

  39. Tang, Y. Y., Lu, Q., Fan, M., Yang, Y. & Posner, M. I. Mechanisms of white matter changes induced by meditation. Proc. Natl Acad. Sci. USA 109, 10570–10574 (2012).

    Article  PubMed  Google Scholar 

  40. Hölzel, B. K. et al. Mindfulness practice leads to increases in regional brain grey matter density. Psychiatry Res. 191, 36–43 (2011).

    Article  PubMed  Google Scholar 

  41. Wells, R. E. et al. Meditation's impact on default mode network and hippocampus in mild cognitive impairment: a pilot study. Neurosci. Lett. 556, 15–19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pickut, B. A. et al. Mindfulness based intervention in Parkinson's disease leads to structural brain changes on MRI: a randomized controlled longitudinal trial. Clin. Neurol. Neurosurg. 115, 2419–2425 (2013).

    Article  PubMed  Google Scholar 

  43. Luders, E., Toga, A. W., Lepore, N. & Gaser, C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of grey matter. Neuroimage 45, 672–678 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luders, E., Clark, K., Narr, K. L. & Toga, A. W. Enhanced brain connectivity in long-term meditation practitioners. Neuroimage 57, 1308–1316 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luders, E. et al. Bridging the hemispheres in meditation: thicker callosal regions and enhanced fractional anisotropy (FA) in long-term practitioners. Neuroimage 61, 181–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luders, E. et al. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners. Hum. Brain Mapp. 34, 3369–3375 (2013).

    Article  PubMed  Google Scholar 

  47. Singleton, O. et al. Change in brainstem grey matter concentration following a mindfulness-based intervention is correlated with improvement in psychological well-being. Front. Hum. Neurosci. 8, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hölzel, B. K. et al. Stress reduction correlates with structural changes in the amygdala. Soc. Cogn. Affect. Neurosci. 5, 11–17 (2010).

    Article  PubMed  Google Scholar 

  49. Luders, E., Kurth, F., Toga, A. W., Narr, K. L. & Gaser, C. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Front. Psychol. 4, 398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luders, E. et al. The unique brain anatomy of meditation practitioners: alterations in cortical gyrification. Front. Hum. Neurosci. 6, 34 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grant, J. A., Courtemanche, J., Duerden, E. G., Duncan, G. H. & Rainville, P. Cortical thickness and pain sensitivity in zen meditators. Emotion 10, 43–53 (2010).

    Article  PubMed  Google Scholar 

  52. Farb, N. A., Segal, Z. V. & Anderson, A. K. Mindfulness meditation training alters cortical representations of interoceptive attention. Soc. Cogn. Affect. Neurosci. 8, 15–26 (2013).

    Article  PubMed  Google Scholar 

  53. Tang, Y.-Y. & Posner, M. I. Attention training and attention state training. Trends Cogn. Sci. 13, 222–227 (2009).

    Article  PubMed  Google Scholar 

  54. Tang, Y. Y. & Posner, M. I. in Handbook of Mindfulness: Theory, Research, and Practice Ch. 5 (eds Brown, K. W., Creswell, J. D. & Ryan, R. M.) 81–89 (Guildford Press, 2014).

    Google Scholar 

  55. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan, J., McCandliss, B. D., Sommer, T., Raz, A. & Posner, M. I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340–347 (2002).

    Article  PubMed  Google Scholar 

  58. Raz, A. & Buhle, J. Typologies of attentional networks. Nature Rev. Neurosci. 7, 367–379 (2006).

    Article  CAS  Google Scholar 

  59. Posner, M. I. & Rothbart, M. K. Research on attention networks as a model for the integration of psychological science. Annu. Rev. Psychol. 58, 1–23 (2007).

    Article  PubMed  Google Scholar 

  60. Chiesa, A., Calati, R. & Serretti, A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin. Psychol. Rev. 31, 449–464 (2011).

    Article  PubMed  Google Scholar 

  61. Chan, D. & Woollacott, M. Effects of level of meditation experience on attentional focus: is the efficiency of executive or orientation networks improved? J. Altern. Complement. Med. 13, 651–657 (2007).

    Article  PubMed  Google Scholar 

  62. Moore, A. & Malinowski, P. Meditation, mindfulness and cognitive flexibility. Conscious. Cogn. 18, 176–186 (2009).

    Article  PubMed  Google Scholar 

  63. Wenk-Sormaz, H. Meditation can reduce habitual responding. Altern. Ther. Health Med. 11, 42–58 (2005).

    PubMed  Google Scholar 

  64. Slagter, H. A. et al. Mental training affects distribution of limited brain resources. PLoS Biol. 5, e138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pashler, H. Overlapping mental operations in serial performance with preview. Q. J. Exp. Psychol. A. 47, 161–191 (discussion 193–199, 201–205) (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Posner, M. I. Measuring alertness. Ann. NY Acad. Sci. 1129, 193–199 (2008).

    Article  PubMed  Google Scholar 

  67. Van Leeuwen, S., Willer, N. G. & Melloni, L. Age effects on attentional blink performance in meditation. Conscious. Cogn. 18, 593–599 (2009).

    Article  PubMed  Google Scholar 

  68. Van den Hurk, P. A., Giommi, F., Gielen, S. C., Speckens, A. E. M. & Barendregt, H. P. Greater efficiency in attentional processing related to mindfulness meditation. Q. J. Exp. Psychol. (Hove) 63, 1168–1180 (2010).

    Article  Google Scholar 

  69. Anderson, N. D., Lau, M. A., Segal, Z. V. & Bishop, S. R. Mindfulness-based stress reduction and attentional control. Clin. Psychol. Psychother. 14, 449–463 (2007).

    Article  Google Scholar 

  70. Jha, A. P., Krompinger, J. & Baime, M. J. Mindfulness training modifies subsystems of attention. Cogn. Affect. Behav. Neurosci. 7, 109–119 (2007).

    Article  PubMed  Google Scholar 

  71. MacLean, K. A. et al. Intensive meditation training improves perceptual discrimination and sustained attention. Psychol Sci, 21, 829–839 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pagnoni, G. & Cekic, M. Age effects on grey matter volume and attentional performance in Zen meditation. Neurobiol. Aging 28, 1623–1627 (2007).

    Article  PubMed  Google Scholar 

  73. Tang, Y. Y. & Posner, M. I. Training brain networks and states. Trends Cogn. Sci. 18, 345–350 (2014).

    Article  PubMed  Google Scholar 

  74. Tang, Y. Y., Tang, R. & Posner, M. I. Brief meditation training induces smoking reduction. Proc. Natl Acad. Sci. USA 110, 13971–13975 (2013).

    Article  PubMed  Google Scholar 

  75. Cahn, B. R. & Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132, 180–211 (2006).

    Article  PubMed  Google Scholar 

  76. Hölzel, B. K. et al. Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci. Lett. 421, 16–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Van Veen, V. & Carter, C. S. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol. Behav. 77, 477–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Posner, M. I., Sheese, B., Rothbart, M. & Tang, Y. Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn. Affect. Behav. Neurosci. 7, 391–395 (2007).

    Article  PubMed  Google Scholar 

  79. Tang, Y. Y. & Tang, R. Ventral-subgenual anterior cingulate cortex and self-transcendence. Front. Psychol. 4, 1000 (2014).

    Google Scholar 

  80. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    Article  PubMed  Google Scholar 

  81. Gard, T. et al. Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cereb. Cortex 22, 2692–2702 (2012).

    Article  PubMed  Google Scholar 

  82. Allen, M. et al. Cognitive-affective neural plasticity following active-controlled mindfulness intervention. J. Neurosci. 32, 15601–15610 (2012). One of the first studies to document the effects of mindfulness using active controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldin, P. R. & Gross, J. J. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion 10, 83–91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Deckersbach, T., Hölzel, B. K., Eisner, L. R., Lazar, S. W. & Nierenberg, A. A. Mindfulness-Based Cognitive Therapy for Bipolar Disorder (Guildford Press, 2014).

    Book  Google Scholar 

  85. Passarotti, A. M., Sweeney, J. A. & Pavuluri, M. N. Emotion processing influences working memory circuits in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 1064–1080 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gross, J. J. in Handbook of Emotion Regulation 2nd edn (ed. Gross, J. J.) 3–20 (Guildford Press, 2014).

    Google Scholar 

  87. Ortner, C. N. M., Kilner, S. J. & Zelazo, P. D. Mindfulness meditation and reduced emotional interference on a cognitive task. Motiv. Emot. 31, 271–283 (2007).

    Article  Google Scholar 

  88. Goleman, D. J. & Schwartz, G. E. Meditation as an intervention in stress reactivity. J. Consult. Clin. Psychol. 44, 456–466 (1976).

    Article  CAS  PubMed  Google Scholar 

  89. Robins, C. J., Keng, S.-L., Ekblad, A. G. & Brantley, J. G. Effects of mindfulness-based stress reduction on emotional experience and expression: a randomized controlled trial. J. Clin. Psychol. 68, 117–131 (2012).

    Article  PubMed  Google Scholar 

  90. Chambers, R., Lo, B. C. Y. & Allen, N. B. The impact of intensive mindfulness training on attentional control, cognitive style, and affect. Cogn. Ther. Res. 32, 303–322 (2008).

    Article  Google Scholar 

  91. Ding, X., Tang, Y. Y., Tang, R. & Posner, M. I. Improving creativity performance by short-term meditation. Behav. Brain Funct. 10, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jain, S. et al. A randomized controlled trial of mindfulness meditation versus relaxation training: effects on distress, positive states of mind, rumination, and distraction. Ann. Behav. Med. 33, 11–21 (2007).

    Article  PubMed  Google Scholar 

  93. Desbordes, G. et al. Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Front. Hum. Neurosci. 6, 292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lutz, J. et al. Mindfulness and emotion regulation — an fMRI study. Soc. Cogn. Affect. Neurosci. 9, 776–785 (2014).

    Article  PubMed  Google Scholar 

  95. Taylor, V. A. et al. Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. Neuroimage 57, 1524–1533 (2011).

    Article  PubMed  Google Scholar 

  96. Westbrook, C. et al. Mindful attention reduces neural and self-reported cue-induced craving in smokers. Soc. Cogn. Affect. Neurosci. 8, 73–84 (2013).

    Article  PubMed  Google Scholar 

  97. Hölzel, B. K. et al. Neural mechanisms of symptom improvements in generalized anxiety disorder following mindfulness training. Neuroimage Clin. 2, 448–458 (2013). One of the first longitudinal, randomized mindfulness studies to document the neural mechanisms in generalized anxiety disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Farb, N. A. S. et al. Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc. Cogn. Affect. Neurosci. 2, 313–322 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Teper, R., Segal, Z. V. & Inzlicht, M. Inside the mindful mind: how mindfulness enhances emotion regulation through improvements in executive control. Curr. Dir. Psychol. 22, 449–454 (2013).

    Article  Google Scholar 

  100. Chiesa, A., Serretti, A. & Jakobsen, J. C. Mindfulness: top-down or bottom-up emotion regulation strategy? Clin. Psychol. Rev. 33, 82–96 (2013).

    Article  PubMed  Google Scholar 

  101. Malinowski, P. Neural mechanisms of attentional control in mindfulness meditation. Front. Hum. Neurosci. 7, 8 (2013).

    Google Scholar 

  102. Jensen, C. G. et al. Mindfulness training affects attention — or is it attentional effort? J. Exp. Psychol. Gen. 141, 106–123 (2012).

    Article  PubMed  Google Scholar 

  103. Posner, M. I., Rothbart, M. K., Reuda, M. R. & Tang, Y. Y. in Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action (ed. Bruya, B.) 410–424 (MIT Press, 2010).

    Google Scholar 

  104. Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J. & Phan, K. L. Amygdala-frontal connectivity during emotion-regulation. Soc. Cogn. Affect Neurosci. 2, 303–312 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R. & Hirsch, J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 51, 871–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kirk, U., Brown, K. W. & Downar, J. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nsu112 (2014).

  107. Olendzki, A. Unlimiting Mind: The Radically Experiential Psychology of Buddhism (Wisdom Publications, 2010).

    Google Scholar 

  108. Sperduti, M., Martinelli, P. & Piolino, P. A neurocognitive model of meditation based on activation likelihood estimation (ALE) meta-analysis. Conscious. Cogn. 21, 269–276 (2012).

    Article  PubMed  Google Scholar 

  109. Fresco, D. M. et al. Initial psychometric properties of the experiences questionnaire: validation of a self-report measure of decentering. Behav. Ther. 38, 234–246 (2007).

    Article  PubMed  Google Scholar 

  110. Shapiro, S. L., Carlson, L. E., Astin, J. A. & Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol. 62, 373–386 (2006).

    Article  PubMed  Google Scholar 

  111. Josipovic, Z. Neural correlates of nondual awareness in meditation. Ann. NY Acad. Sci. 1307, 9–18 (2014).

    Article  PubMed  Google Scholar 

  112. Kerr, C. E., Josyula, K. & Littenberg, R. Developing an observing attitude: an analysis of meditation diaries in an MBSR clinical trial. Clin. Psychol. Psychother. 18, 80–93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dor-Ziderman, Y., Berkovich-Ohana, A., Glicksohn, J. & Goldstein, A. Mindfulness-induced selflessness: a MEG neurophenomenological study. Front. Hum. Neurosci. 7, 582 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Emavardhana, T. & Tori, C. D. Changes in self-concept, ego defense mechanisms, and religiosity following seven-day Vipassana meditation retreats. J. Sci. Stud. Relig. 36, 194–206 (1997).

    Article  Google Scholar 

  115. Haimerl, C. J. & Valentine, E. R. The effect of contemplative practice on intrapersonal, interpersonal, and transpersonal dimensions of the self-concept. J. Transpers. Psychol. 33, 37–52 (2001).

    Google Scholar 

  116. Sahdra, B. K., Shaver, P. R. & Brown, K. W. A scale to measure nonattachment: a Buddhist complement to Western research on attachment and adaptive functioning. J. Pers. Assess. 92, 116–127 (2010).

    Article  PubMed  Google Scholar 

  117. Brewer, J. A. et al. Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl Acad. Sci. USA 108, 20254–20259 (2011). One of the first studies to document the alteration of the DMN by meditation.

    Article  PubMed  Google Scholar 

  118. Hasenkamp, W. & Barsalou, L. W. Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 6, 38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  120. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Northoff, G. et al. Self-referential processing in our brain: a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    Article  PubMed  Google Scholar 

  122. Sajonz, B. et al. Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. Neuroimage 50, 1606–1617 (2010).

    Article  PubMed  Google Scholar 

  123. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  124. Khalsa, S. S. et al. Interoceptive awareness in experienced meditators. Psychophysiology 45, 671–677 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nielsen, L. & Kaszniak, A. W. Awareness of subtle emotional feelings: a comparison of long-term meditators and nonmeditators. Emotion 6, 392–405 (2006).

    Article  PubMed  Google Scholar 

  126. Sze, J. A., Gyurak, A., Yuan, J. W. & Levenson, R. W. Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion 10, 803–814 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fox, K. C. R. et al. Meditation experience predicts introspective accuracy. PLoS ONE 7, e45370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lutz, A., Brefczynski-Lewis, J., Johnstone, T. & Davidson, R. J. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS ONE 3, e1897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  Google Scholar 

  130. Monti, D. A. et al. Changes in cerebral blood flow and anxiety associated with an 8-week mindfulness programme in women with breast cancer. Stress Health 28, 397–407 (2012).

    Article  PubMed  Google Scholar 

  131. Grey, J. D., Milner, T. A. & McEwen, B. S. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience 239, 214–227 (2013).

    Article  CAS  Google Scholar 

  132. Creswell, J. D., Pacilio, L. E., Lindsay, E. K. & Brown, K. W. Brief mindfulness meditation training alters psychological and neuroendocrine responses to social evaluative stress. Psychoneuroendocrinology 44, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Tang, Y. Y., Tang, R., Jiang, C. & Posner, M. I. Short-term meditation intervention improves self-regulation and academic performance. J. Child Adolesc. Behav. 2, 4 (2014).

    Article  Google Scholar 

  134. Chiesa, A., Serretti, A. Mindfulness-based stress reduction for stress management in healthy people: a review and meta-analysis. J. Altern. Complement. Med. 15, 593–600 (2009).

    Article  PubMed  Google Scholar 

  135. Jacobs, T. L. et al. Self-reported mindfulness and cortisol during a Shamatha meditation retreat. Health Psychol. 32, 1104–1109 (2013).

    Article  PubMed  Google Scholar 

  136. Fan, Y., Tang, Y. Y. & Posner, M. I. Cortisol level modulated by integrative meditation in a dose-dependent fashion. Stress Health 30, 65–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Fan, Y., Tang, Y. Y., Ma, Y. & Posner, M. I. Mucosal immunity modulated by integrative meditation in a dose-dependent fashion. J. Altern. Complement. Med. 16, 151–155 (2010).

    Article  PubMed  Google Scholar 

  138. Kang, D. H. et al. The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Soc. Cogn. Affect. Neurosci. 8, 27–33 (2013).

    Article  PubMed  Google Scholar 

  139. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  140. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  141. Xue, S., Tang, Y. Y. & Posner, M. I. Short-term meditation increases network efficiency of the anterior cingulate cortex. Neuroreport 22, 570–574 (2011).

    Article  PubMed  Google Scholar 

  142. Gard, T. et al. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Front. Aging Neurosci. 6, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lane, R. D. & Wager, T. D. The new field of brain-body medicine: what have we learned and where are we headed? Neuroimage 47, 1135–1140 (2009).

    Article  PubMed  Google Scholar 

  144. Garrison, K. M. et al. Real-time fMRI links subjective experience with brain activity during focused attention. Neuroimage 81, 110–118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. LaConte, S. M. Decoding fMRI brain states in real-time. Neuroimage 56, 440–454 (2011).

    Article  PubMed  Google Scholar 

  146. Zotev, V. et al. Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS ONE 6, e24522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 523–534 (2006).

    Article  CAS  Google Scholar 

  148. van I. Jendoorn, M. H. et al. Gene-by-environment experiments: a new approach to finding the missing heritability. Nature Rev. Genet. 12, 881 (2011).

    Article  CAS  Google Scholar 

  149. Jung, Y. H. et al. Influence of brain-derived neurotrophic factor and catechol O-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress. Stress 15, 97–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Ding, X., Tang, Y. Y., Deng, Y., Tang, R. & Posner, M. I. Mood and personality predict improvement in creativity due to meditation training. Learn. Individ. Differ. 37, 217–221 (2014).

    Article  Google Scholar 

  151. Rothbart, M. K. Becoming Who We Are (Guilford Press, 2011).

    Google Scholar 

  152. Takahashi, T. et al. Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int. J. Psychophysiol. 55, 199–207 (2005).

    Article  PubMed  Google Scholar 

  153. Moffitt, T. E. et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl Acad. Sci. USA 108, 2693–2698 (2011).

    Article  PubMed  Google Scholar 

  154. Hofmann, S. G., Sawyer, A. T., Witt, A. A. & Oh, D. The effect of mindfulness-based therapy on anxiety and depression: a meta-analytic review. J. Consult. Clin. Psychol. 78, 169–183 (2010). A review of the effect of mindfulness-based therapy on anxiety and mood symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bowen, S. et al. Relative efficacy of mindfulness-based relapse prevention, standard relapse prevention, and treatment as usual for substance use disorders: a randomized clinical trial. JAMA Psychiatry 71, 547–556 (2014). One of the first longitudinal studies to document the effects of mindfulness on drug use and heavy drinking.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Schoenberg, P. L. A. et al. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 125, 1407–1416 (2014).

    Article  PubMed  Google Scholar 

  157. Zeidan, F., Martucci, K. T., Kraft, R. A., McHaffie, J. G. & Coghill, R. C. Neural correlates of mindfulness meditation-related anxiety relief. Soc. Cogn. Affect. Neurosci. 9, 751–759 (2014).

    Article  PubMed  Google Scholar 

  158. Desbordes, G. et al. Moving beyond mindfulness: defining equanimity as an outcome measure in meditation and contemplative research. Mindfulness http://dx.doi.org/10.1007/s12671-013-0269-8 (2014).

  159. Smith, J. C. Alterations in brain and immune function produced by mindfulness meditation: three caveats. Psychosom. Med. 66, 148–152 (2004).

    Article  PubMed  Google Scholar 

  160. Davidson, R. J., Kabat-Zinn, J. Response to Smith, J. C. Psychosom. Med. 66, 148–152 (2004).

    Article  Google Scholar 

  161. Lippelt, D. P., Hommel, B. & Colzato, L. S. Focused attention, open monitoring and loving kindness meditation: effects on attention, conflict monitoring, and creativity — a review. Front. Psychol. 5, 1083 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59, 750–760 (2012). One of the first studies to document brain activity during different phases of focused-attention meditation.

    Article  PubMed  Google Scholar 

  163. Pagnoni, G. Dynamical properties of BOLD activity from the ventral posteromedial cortex associated with meditation and attentional skills. J. Neurosci. 32, 5242–5249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Öst, L. G. in Phobias: A Handbook of Theory, Research, and Treatment (ed. Davey, G. C. L.) 227–247 (John Wiley, 1997).

    Google Scholar 

  165. Milad, M. R. & Quirk, G. J. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry. 62, 446–454 (2007).

    Article  PubMed  Google Scholar 

  167. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Davidson, R. J., Jackson, D. C. & Kalin, N. H. Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol. Bull. 126, 890–909 (2000).

    Article  PubMed  Google Scholar 

  169. Phelps, E. A., Delgado, M. R., Nearing, K. I. & LeDoux, J. E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Holt, D. J. et al. Extinction memory is impaired in schizophrenia. Biol. Psychiatry 65, 455–463 (2009).

    Article  PubMed  Google Scholar 

  171. Milad, M. R. et al. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J. Psychiatr. Res. 42, 515–520 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  172. McEwen, B. S. & Morrison, J. H. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79, 16–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liston, C., McEwen, B. S. & Casey, B. J. Psychossocial stress sreversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA 106, 912–917 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Davidson, R. J. & McEwen, B. S. Social influences on neuroplasticity: stress and interventions to promote well-being. Nature Neurosci. 15, 689–695 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. McEwen, B. S. The brain on stress: toward an integrative approach to brain, body and behaviour. Perspect. Psychol. Sci. 8, 673–675 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Thayer, J. F. & Lane, R. D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affective Disord. 61, 201–216 (2000).

    Article  CAS  Google Scholar 

  178. Creswell, J. D. in Handbook of Mindfulness: Theory, Research, and Practice Ch. 23 (eds Brown, K. W., Creswell, J. D. & Ryan, R. M.) (Guildford Press, 2014).

    Google Scholar 

  179. Ditto, B., Eclache, M. & Goldman, N. Short-term autonomic and cardiovascular effects of mindfulness body scan meditation. Ann. Behav. Med. 32, 227–234 (2006).

    Article  PubMed  Google Scholar 

  180. Xiong, G. L. & Doraiswamy, P. M. Does meditation enhance cognition and brain plasticity? Ann. NY Acad. Sci. 1172, 63–69 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Office of Naval Research. We thank E. Luders for her contributions to an earlier version of this manuscript. We benefited from discussions with R. Davidson and A. Chiesa. We thank four anonymous reviewers for their constructive comments and R. Tang for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yuan Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Longitudinal studies

Study designs that compare data from one or more groups at several time points and that ideally include a (preferably active) control condition and random assignment to conditions.

Cross-sectional studies

Study designs that compare data from an experimental group with those from a control group at one point in time.

Correlational studies

Studies that assess the co-variation between two variables: for example, co-variation of functional or structural properties of the brain and a behavioural variable, such as reported stress.

Blood-oxygen-level-dependent contrasts

(BOLD contrasts). Signals that can be extracted with functional MRI and that reflect the change in the amount of deoxyhaemoglobin that is induced by changes in the activity of neurons and their synapses in a region of the brain. The signals thus reflect the activity in a local brain region.

Arterial spin labelling

(ASL). An MRI technique that is capable of measuring cerebral blood flow in vivo. It provides cerebral perfusion maps without requiring the administration of a contrast agent or the use of ionizing radiation because it uses magnetically labelled endogenous blood water as a freely diffusible tracer.

Brain state

The reliable patterns of brain activity that involve the activation and/or connectivity of multiple large-scale brain networks.

Fractional anisotropy

A parameter in diffusion tensor imaging, which images brain structures by measuring the diffusion properties of water molecules. It provides information about the microstructural integrity of white matter.

Axial and radial diffusivity

Derived from the eigenvalues of the diffusion tensor, their underlying biophysical properties are associated with axonal density and myelination, respectively.

Activation likelihood estimation meta-analysis

A technique for coordinate-based meta-analysis of neuroimaging data. It determines the convergence of foci reported from different experiments, weighted by the number of participants in each study.

Multivariate pattern analysis

A method of analysing functional MRI data that is capable of detecting and characterizing information represented in patterns of activity distributed within and across multiple regions of the brain. Unlike univariate approaches, which only identify magnitudes of activity in localized parts of the brain, this approach can monitor multiple areas at once.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YY., Hölzel, B. & Posner, M. The neuroscience of mindfulness meditation. Nat Rev Neurosci 16, 213–225 (2015). https://doi.org/10.1038/nrn3916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing