Key Points
-
Gliomas are commonly associated with the development of epilepsy; the two conditions share common pathogenic mechanisms and influence each other
-
Excessive glutamate release and activation of glutamate receptors promotes glioma growth, cell death and epileptic activity
-
GABAergic signalling is antiproliferative, whereas chloride accumulation is required for mitosis and migration of tumour cells, and is responsible for epileptogenic depolarizing GABAergic activity in neurons
-
The molecular target of rapamycin (mTOR) signalling pathway and epigenetic abnormalities are also involved in epileptogenesis and tumour growth
-
As a result of the shared pathogenic mechanisms, antiepileptic drugs can have antitumour effects, and antitumour therapy can control seizures
-
Single drug therapies targeting the shared mechanisms are now being assessed for combined seizure and tumour control, and have the advantage of lower risks of adverse effects and drug interactions
Abstract
Epilepsy often develops in patients with glioma, and the two conditions share common pathogenic mechanisms. Altered expression of glutamate transporters, including the cystineâglutamate transporter (xCT) system, increases concentrations of extracellular glutamate, which contribute to epileptic discharge, tumour proliferation and peripheral excitotoxicity. Furthermore, mutation of the isocitrate dehydrogenase 1 gene in low-grade gliomas causes production of D-2-hydroxyglutarate, a steric analogue of glutamate. Dysregulation of intracellular chloride promotes glioma cell mitosis and migration, and γ-aminobutyric acid (GABA) signalling suppresses proliferation. In neurons, however, chloride accumulation leads to aberrant depolarization on GABA receptor activation, thereby promoting epileptic activity. The molecular target of rapamycin (mTOR) pathway and epigenetic abnormalities are also involved in the development of tumours and seizures. Antitumour therapy can contribute to seizure control, and antiepileptic drugs might have beneficial effects on tumours. Symptomatic treatment with antiepileptic drugs carries risks of adverse effects and drug interactions. In this Review, we discuss the potential for single therapeutic agents, such as the xCT blocker sulfasalazine, the chloride regulator bumetanide, and the histone deacetylase inhibitor valproic acid, to manage both gliomas and associated epilepsy. We also provide guidance on the evidence-based use of antiepileptic drugs in brain tumours. The development of solo therapies to treat both aspects of gliomas promises to yield more-effective treatment with fewer risks of toxicity and drug interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Noebels, J. L. et al. (eds) Jasper's Basic Mechanisms of the Epilepsies 4th edn, (OUP USA, 2012).
Kerkhof, M. & Vecht, C. J. Seizure characteristics and prognostic factors of gliomas. Epilepsia 54 (Suppl. 9), 12â17 (2013).
van Breemen, M. S., Wilms, E. B. & Vecht, C. J. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 6, 421â430 (2007).
Buckingham, S. C. & Robel, S. Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem. Int. 63, 696â701 (2013).
Pallud, J. et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 6, 244ra89 (2014).
Gerin, C. et al. Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas. Neuro Oncol. 15, 1379â1388 (2013).
Pallud, J. et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology 74, 1724â1731 (2010).
Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 7, 289ra86 (2015).
Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1â7 (2011).
Hirsch, J. F., Buisson-Ferey, J., Sachs, M., Hirsch, J. C. & Scherrer, J. Electrocorticogram and unitary activites with expanding lesions in man. Electroencephalogr. Clin. Neurophysiol. 21, 417â428 (in French) (1966).
Tran, T. A. et al. Significance of spikes recorded on intraoperative electrocorticography in patients with brain tumor and epilepsy. Epilepsia 38, 1132â1138 (1997).
Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803â816 (2015).
Marcus, H. J., Carpenter, K. L., Price, S. J. & Hutchinson, P. J. in vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J. Neurooncol. 97, 11â23 (2010).
Ye, Z. C., Rothstein, J. D. & Sontheimer, H. Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J. Neurosci. 19, 10767â10777 (1999).
Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010â1015 (2001).
Savaskan, N. E. et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat. Med. 14, 629â632 (2008).
de Groot, J. & Sontheimer, H. Glutamate and the biology of gliomas. Glia 59, 1181â1189 (2011).
Yuen, T. I. et al. Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79, 883â889 (2012).
Kandil, S., Brennan, L. & McBean, G. J. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-γ-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochem. Int. 56, 611â619 (2010).
Noch, E. & Khalili, K. Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol. Ther. 8, 1791â1797 (2009).
Duran-Peña, A. et al. IDH1 mutation in low-grade gliomas related to epilepsy as initial symptom. Neuro Oncol. 16 (Suppl. 2), ii39âii40 (2014).
Stockhammer, F. et al. IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21, 194â197 (2012).
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765â773 (2009).
Sanson, M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 27, 4150â4154 (2009).
Andronesi, O. C. et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4, 116ra4 (2012).
Elkhaled, A. et al. Characterization of metabolites in infiltrating gliomas using ex vivo1H high-resolution magic angle spinning spectroscopy. NMR Biomed. 27, 578â593 (2014).
Lyons, S. A., Chung, W. J., Weaver, A. K., Ogunrinu, T. & Sontheimer, H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 67, 9463â9471 (2007).
D'Onofrio, M. et al. Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J. Neurochem. 84, 1288â1295 (2003).
Stepulak, A. et al. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol. 132, 435â445 (2009).
Colman, H. et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol. 12, 49â57 (2010).
Ishiuchi, S. et al. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 8, 971â978 (2002).
Rzeski, W., Turski, L. & Ikonomidou, C. Glutamate antagonists limit tumor growth. Proc. Natl Acad. Sci. USA 98, 6372â6377 (2001).
Ishiuchi, S. et al. Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J. Neurosci. 27, 7987â8001 (2007).
de Groot, J. F., Piao, Y., Lu, L., Fuller, G. N. & Yung, W. K. Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J. Neurooncol. 88, 121â133 (2008).
Grossman, S. A. et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin. Cancer Res. 16, 2443â2449 (2010).
Iwamoto, F. M. et al. Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas. Cancer 116, 1776â1782 (2010).
US National Library of Science. ClinicalTrials.gov [online], (2015).
Yohay, K. et al. Efficacy of local polymer-based and systemic delivery of the anti-glutamatergic agents riluzole and memantine in rat glioma models. J. Neurosurg. 120, 854â863 (2014).
US National Library of Science. ClinicalTrials.gov [online], (2015).
Ching, J. et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget 6, 21301â21314 (2015).
Ellis, H. P. & Kurian, K. M. Biological rationale for the use of PPARγ agonists in glioblastoma. Front. Oncol. 4, 52 (2014).
Puligheddu, M. et al. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PLoS ONE 8, e64541 (2013).
Saha, L., Bhandari, S., Bhatia, A., Banerjee, D. & Chakrabarti, A. Anti-kindling effect of bezafibrate, a peroxisome proliferator-activated receptors alpha agonist, in pentylenetetrazole induced kindling seizure model. J. Epilepsy Res. 4, 45â54 (2014).
de Groot, J. F., Liu, T. J., Fuller, G. & Yung, W. K. The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res. 65, 1934â1940 (2005).
Grommes, C., Conway, D. S., Alshekhlee, A. & Barnholtz-Sloan, J. S. Inverse association of PPARγ agonists use and high grade glioma development. J. Neurooncol. 100, 233â239 (2010).
Arcella, A. et al. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol. 7, 236â245 (2005).
Rothstein, J. D. et al. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73â77 (2005).
Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626â630 (2013).
Bianchi, L. et al. Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study. Neurochem. Res. 29, 325â334 (2004).
Haglund, M. M. et al. Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J. Neurosurg. 77, 209â216 (1992).
Marco, P., Sola, R. G., Ramón y Cajal, S. & DeFelipe, J. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex. Brain Res. Bull. 44, 47â66 (1997).
Köhling, R. & Avoli, M. Methodological approaches to exploring epileptic disorders in the human brain in vitro. J. Neurosci. Methods 155, 1â19 (2006).
Chang, W. S. et al. Decreased inhibitory neuronal activity in patients with frontal lobe brain tumors with seizure presentation: preliminary study using magnetoencephalography. Acta Neurochir. (Wien) 155, 1449â1457 (2013).
Smits, A. et al. GABA-A channel subunit expression in human glioma correlates with tumor histology and clinical outcome. PLoS ONE 7, e37041 (2012).
Labrakakis, C., Patt, S., Hartmann, J. & Kettenmann, H. Functional GABAA receptors on human glioma cells. Eur. J. Neurosci. 10, 231â238 (1998).
Young, S. Z. & Bordey, A. GABA's control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda) 24, 171â185 (2009).
Habela, C. W., Ernest, N. J., Swindall, A. F. & Sontheimer, H. Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J. Neurophysiol. 101, 750â757 (2009).
Habela, C. W., Olsen, M. L. & Sontheimer, H. ClC3 is a critical regulator of the cell cycle in normal and malignant glial cells. J. Neurosci. 28, 9205â9217 (2008).
Watkins, S. & Sontheimer, H. Hydrodynamic cellular volume changes enable glioma cell invasion. J. Neurosci. 31, 17250â17259 (2011).
Haas, B. R. & Sontheimer, H. Inhibition of the sodiumâpotassiumâchloride cotransporter isoform-1 reduces glioma invasion. Cancer Res. 70, 5597â5606 (2010).
Ernest, N. J., Weaver, A. K., Van Duyn, L. B. & Sontheimer, H. W. Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells. Am. J. Physiol. Cell Physiol. 288, C1451âC1460 (2005).
Garzon-Muvdi, T. et al. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol. 10, e1001320 (2012).
Algharabil, J. et al. Inhibition of Na+âK+â2Clâ cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell. Physiol. Biochem. 30, 33â48 (2012).
Cuddapah, V. A. et al. Kinase activation of ClC-3 accelerates cytoplasmic condensation during mitotic cell rounding. Am. J. Physiol. Cell Physiol. 302, C527âC538 (2012).
McCoy, E. & Sontheimer, H. Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia 55, 1034â1043 (2007).
Cuddapah, V. A., Turner, K. L., Seifert, S. & Sontheimer, H. Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J. Neurosci. 33, 1427â1440 (2013).
Huberfeld, G., Blauwblomme, T. & Miles, R. Hippocampus and epilepsy: findings from human tissues. Rev. Neurol. (Paris) 171, 236â251 (2015).
Huberfeld, G. et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866â9873 (2007).
Palma, E. et al. Anomalous levels of Clâ transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc. Natl Acad. Sci. USA 103, 8465â8468 (2006).
Muñoz, A., Méndez, P., DeFelipe, J. & Alvarez-Leefmans, F. J. Cationâchloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia 48, 663â673 (2007).
Cepeda, C. et al. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia type IIB compared with tuberous sclerosis complex. Neurobiol. Dis. 45, 310â321 (2012).
Talos, D. M. et al. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann. Neurol. 71, 539â551 (2012).
Campbell, S. L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23â36 (2015).
Conti, L. et al. Anomalous levels of Clâ transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex. Epilepsia 52, 1635â1644 (2011).
Aronica, E. et al. Differential expression patterns of chloride transporters, Na+âK+â2Clâ-cotransporter and K+âClâ-cotransporter, in epilepsy-associated malformations of cortical development. Neuroscience 145, 185â196 (2007).
Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017â1021 (2005).
Lee, H. H., Deeb, T. Z., Walker, J. A., Davies, P. A. & Moss, S. J. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents. Nat. Neurosci. 14, 736â743 (2011).
Haas, B. R. et al. With-no-lysine kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Am. J. Physiol. Cell Physiol. 301, C1150âC1160 (2011).
Zhu, W. et al. WNK1âOSR1 kinase-mediated phospho-activation of Na+âK+â2Clâ cotransporter facilitates glioma migration. Mol. Cancer 13, 31 (2014).
Zhang, X. et al. The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts. Lasers Surg. Med. 46, 422â430 (2014).
Dzhala, V. I. et al. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J. Neurosci. 30, 11745â11761 (2010).
Nardou, R. et al. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain 134, 987â1002 (2011).
Rheims, S., Represa, A., Ben-Ari, Y. & Zilberter, Y. Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses. J. Neurophysiol. 100, 620â628 (2008).
Kilb, W., Sinning, A. & Luhmann, H. J. Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse. Neuropharmacology 53, 524â533 (2007).
Kahle, K. T., Barnett, S. M., Sassower, K. C. & Staley, K. J. Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the Na+âK+â2Clâ cotransporter NKCC1. J. Child Neurol. 24, 572â576 (2009).
Eftekhari, S. et al. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 54, e9âe12 (2013).
US National Library of Science. ClinicalTrials.gov [online], (2015).
Pressler, R. M. et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility Phase 1/2 trial. Lancet Neurol. 14, 469â477 (2015).
Töllner, K. et al. A novel prodrug-based strategy to increase effects of bumetanide in epilepsy. Ann. Neurol. 75, 550â562 (2014).
Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524â1528 (2013).
Hamidi, S. & Avoli, M. KCC2 function modulates in vitro ictogenesis. Neurobiol. Dis. 79, 51â58 (2015).
Lyons, S. A., O'Neal, J. & Sontheimer, H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39, 162â173 (2002).
Sontheimer, H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. (Maywood) 233, 779â791 (2008).
Lui, V. C., Lung, S. S., Pu, J. K., Hung, K. N. & Leung, G. K. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res. 30, 4515â4524 (2010).
Lipton, J. O. & Sahin, M. The neurology of mTOR. Neuron 84, 275â291 (2014).
Baybis, M. et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann. Neurol. 56, 478â487 (2004).
Mohamed, A. R. et al. Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. Neurology 79, 2249â2257 (2012).
Weston, M. C., Chen, H. & Swann, J. W. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J. Neurosci. 32, 11441â11452 (2012).
Bateup, H. S. et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78, 510â522 (2013).
Lozovaya, N. et al. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat. Commun. 5, 4563 (2014).
Knobbe, C. B., Merlo, A. & Reifenberger, G. Pten signaling in gliomas. Neuro Oncol. 4, 196â211 (2002).
Chakravarti, A. et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 7, 2387â2395 (2001).
Prabowo, A. S. et al. BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol. 24, 52â66 (2014).
Penman, C. L., Faulkner, C., Lowis, S. P. & Kurian, K. M. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front. Oncol. 5, 54 (2015).
Franz, D. N. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol. 59, 490â498 (2006).
Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363, 1801â1811 (2010).
Sami, A. & Karsy, M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol. 34, 1991â2002 (2013).
US National Library of Science. ClinicalTrials.gov [online], (2016).
US National Library of Science. ClinicalTrials.gov [online], (2012).
US National Library of Science. ClinicalTrials.gov [online], (2016).
US National Library of Science. ClinicalTrials.gov [online], (2016).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2012).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2013).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2016).
Meikle, L. et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28, 5422â5432 (2008).
Zeng, L. H., Xu, L., Gutmann, D. H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444â453 (2008).
Krueger, D. A. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol. 74, 679â687 (2013).
Wiegand, G. et al. Everolimus in tuberous sclerosis patients with intractable epilepsy: a treatment option? Eur. J. Paediatr. Neurol. 17, 631â638 (2013).
Cardamone, M. et al. Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J. Pediatr. 164, 1195â1200 (2014).
US National Library of Science. ClinicalTrials.gov [online], (2016).
US National Library of Science. ClinicalTrials.gov [online], (2015).
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061â1068 (2008).
Bangert, A. et al. Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by c-myc-mediated downregulation of cFLIP. Oncogene 31, 4677â4688 (2012).
Cipro, Å ., HrËebacËková, J., HrabeËta, J., Poljaková, J. & Eckschlager, T. Valproic acid overcomes hypoxia-induced resistance to apoptosis. Oncol. Rep. 27, 1219â1226 (2012).
Van Nifterik, K. A. et al. Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J. Neurooncol. 107, 61â67 (2012).
Chen, C. H., Chang, Y. J., Ku, M. S., Chung, K. T. & Yang, J. T. Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J. Mol. Med. (Berl.) 89, 303â315 (2011).
Brodie, S. A. & Brandes, J. C. Could valproic acid be an effective anticancer agent? The evidence so far. Expert Rev. Anticancer Ther. 14, 1097â1100 (2014).
Weller, M. et al. Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77, 1156â1164 (2011).
Kerkhof, M. et al. Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol. 15, 961â967 (2013).
Krauze, A. V. et al. A Phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 92, 986â992 (2015).
Happold, C. et al. Does valproic acid improve survival in glioblastoma? A meta-analysis of randomized trials in newly diagnosed glioblastoma [abstract]. Neuro Oncol. 17 (Suppl. 5), v12 (2015).
Bobustuc, G. C. et al. Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol. 12, 917â927 (2010).
Kim, Y. H. et al. Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer 121, 2926â2932 (2015).
Grossman, S. A. et al. Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter Phase II trial. J. Clin. Oncol. 27, 4155â4161 (2009).
Thom, M., Blümcke, I. & Aronica, E. Long-term epilepsy-associated tumors. Brain Pathol. 22, 350â379 (2012).
Englot, D. J., Berger, M. S., Barbaro, N. M. & Chang, E. F. Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia 53, 51â57 (2012).
Pallud, J. et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137, 449â462 (2014).
Englot, D. J., Han, S. J., Berger, M. S., Barbaro, N. M. & Chang, E. F. Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 70, 921â928 (2012).
Luyken, C. et al. The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44, 822â830 (2003).
Chang, E. F. et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J. Neurosurg. 108, 227â235 (2008).
Chaichana, K. L., Parker, S. L., Olivi, A. & Quiñones-Hinojosa, A. Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. J. Neurosurg. 111, 282â292 (2009).
Englot, D. J., Berger, M. S., Barbaro, N. M. & Chang, E. F. Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J. Neurosurg. 115, 240â244 (2011).
van den Bent, M. J. et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366, 985â990 (2005).
Rudà , R. et al. Seizure control following radiotherapy in patients with diffuse gliomas: a retrospective study. Neuro Oncol. 15, 1739â1749 (2013).
Pace, A. et al. Temozolomide chemotherapy for progressive low-grade glioma: clinical benefits and radiological response. Ann. Oncol. 14, 1722â1726 (2003).
Rudà , R., Bello, L., Duffau, H. & Soffietti, R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol. 14 (Suppl. 4), iv55âiv64 (2012).
Koekkoek, J. A. et al. Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: a systematic review. Neuro Oncol. 17, 924â934 (2015).
Kaloshi, G. et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68, 1831â1836 (2007).
Sherman, J. H. et al. Impact of temozolomide chemotherapy on seizure frequency in patients with low-grade gliomas. J. Neurosurg. 114, 1617â1621 (2011).
Roelcke, U. et al. Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro Oncol. http://dx.doi.org/10.1093/neuonc/nov282 (2015).
Koekkoek, J. A. et al. Seizure reduction is a prognostic marker in low-grade glioma patients treated with temozolomide. J. Neurooncol. 126, 347â354 (2016).
Krumholz, A. et al. Evidence-based guideline: management of an unprovoked first seizure in adults: report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 84, 1705â1713 (2015).
Glantz, M. J. et al. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neurology 54, 1886â1893 (2000).
Soffietti, R. et al. Guidelines on management of low-grade gliomas: report of an EFNSâEANO Task Force. Eur. J. Neurol. 17, 1124â1133 (2010).
Glauser, T. et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54, 551â563 (2013).
Karceski, S., Morrell, M. J. & Carpenter, D. Treatment of epilepsy in adults: expert opinion, 2005. Epilepsy Behav. 7 (Suppl. 1), S1âS64 (2005).
Maschio, M. et al. Levetiracetam monotherapy in patients with brain tumor-related epilepsy: seizure control, safety, and quality of life. J. Neurooncol. 104, 205â214 (2011).
Rosati, A. et al. Efficacy and safety of levetiracetam in patients with glioma: a clinical prospective study. Arch. Neurol. 67, 343â346 (2010).
Helmstaedter, C. & Witt, J. A. The effects of levetiracetam on cognition: a non-interventional surveillance study. Epilepsy Behav. 13, 642â649 (2008).
de Groot, M. et al. Levetiracetam improves verbal memory in high-grade glioma patients. Neuro Oncol. 15, 216â223 (2013).
Mbizvo, G. K., Dixon, P., Hutton, J. L. & Marson, A. G. Levetiracetam add-on for drug-resistant focal epilepsy: an updated Cochrane Review. Cochrane Database Syst. Rev. 9, CD001901 (2012).
Benit, C. & Vecht, C. J. Seizures and cancer: drug interactions of anticonvulsants with chemotherapeutic agents, tyrosine-kinase inhibitors and glucocorticoids. Neuro Oncol. Pract. http://dx.doi.org/10.1093/nop/npv038 (2015).
Wick, W. et al. Pharmacotherapy of epileptic seizures in glioma patients: who, when, why and how long? Onkologie 28, 391â396 (2005).
Bodalia, P. N. et al. Comparative efficacy and tolerability of anti-epileptic drugs for refractory focal epilepsy: systematic review and network meta-analysis reveals the need for long term comparator trials. Br. J. Clin. Pharmacol. 76, 649â667 (2013).
Bromley, R. et al. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child. Cochrane Database Syst. Rev. 10, CD010236 (2014).
Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696â1703 (2013).
Vecht, C. J., Kerkhof, M. & Duran-Pena, A. Seizure prognosis in brain tumors: new insights and evidence-based management. Oncologist 19, 751â759 (2014).
Brodie, M. J. & Sills, G. J. Combining antiepileptic drugs â rational polytherapy? Seizure 20, 369â375 (2011).
French, J. A. & Faught, E. Rational polytherapy. Epilepsia 50 (Suppl. 8), 63â68 (2009).
Otoul, C., Arrigo, C., van Rijckevorsel, K. & French, J. A. Meta-analysis and indirect comparisons of levetiracetam with other second-generation antiepileptic drugs in partial epilepsy. Clin. Neuropharmacol. 28, 72â78 (2005).
Prust, M. J. et al. Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 85, 683â691 (2015).
Kaminski, R. M., Matagne, A., Patsalos, P. N. & Klitgaard, H. Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia 50, 387â397 (2009).
Ricard, D., Taillia, H. & Renard, J. L. Brain damage from anticancer treatments in adults. Curr. Opin. Oncol. 21, 559â565 (2009).
Klein, M. et al. Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann. Neurol. 54, 514â520 (2003).
Correa, D. D. et al. Cognitive functions in low-grade gliomas: disease and treatment effects. J. Neurooncol. 81, 175â184 (2007).
Correa, D. D. et al. Longitudinal cognitive follow-up in low grade gliomas. J. Neurooncol. 86, 321â327 (2008).
Witt, J. A. & Helmstaedter, C. Monitoring the cognitive effects of antiepileptic pharmacotherapy â approaching the individual patient. Epilepsy Behav. 26, 450â456 (2013).
Helmstaedter, C. & Witt, J. A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiromate in a naturalistic outpatient setting. Epilepsy Behav. 26, 182â187 (2013).
Brodie, M. J. & Yuen, A. W. Lamotrigine substitution study: evidence for synergism with sodium valproate? Epilepsy Res. 26, 423â432 (1997).
Saria, M. G. et al. Retrospective analysis of the tolerability and activity of lacosamide in patients with brain tumors: clinical article. J. Neurosurg. 118, 1183â1187 (2013).
Riechelmann, R. P. Drug combinations with the potential to interact among cancer patients. Support. Care Cancer 15, 1113â1114 (2007).
Relling, M. V. et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 356, 285â290 (2000).
Brodie, M. J. et al. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 54, 11â27 (2013).
Gilbert, M. R. & Armstrong, T. S. Management of patients with newly diagnosed malignant primary brain tumors with a focus on the evolving role of temozolomide. Ther. Clin. Risk Manag. 3, 1027â1033 (2007).
Maschio, M. et al. Temozolomide treatment does not affect topiramate and oxcarbazepine plasma concentrations in chronically treated patients with brain tumor-related epilepsy. J. Neurooncol. 90, 217â221 (2008).
Coulter, D. W. et al. Valproic acid reduces the tolerability of temsirolimus in children and adolescents with solid tumors. Anticancer Drugs 24, 415â421 (2013).
Bourg, V., Lebrun, C., Chichmanian, R. M., Thomas, P. & Frenay, M. Nitroso-urea-cisplatin-based chemotherapy associated with valproate: increase of haematologic toxicity. Ann. Oncol. 12, 217â219 (2001).
Gerstner, T. et al. Valproate-associated coagulopathies are frequent and variable in children. Epilepsia 47, 1136â1143 (2006).
Psaras, T. et al. Quantitative assessment of postoperative blood collection in brain tumor surgery under valproate medication. Zentralbl. Neurochir. 69, 165â169 (2008).
Simó, M. et al. Impact of antiepileptic drugs on thrombocytopenia in glioblastoma patients treated with standard chemoradiotherapy. J. Neurooncol. 108, 451â458 (2012).
Tinchon, A. et al. Haematological toxicity of valproic acid compared to levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study. J. Neurol. 262, 179â186 (2015).
Italiano, D. & Perucca, E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update. Clin. Pharmacokinet. 52, 627â645 (2013).
Johannessen Landmark, C. et al. Pharmacokinetic variability of four newer antiepileptic drugs, lamotrigine, levetiracetam, oxcarbazepine, and topiramate: a comparison of the impact of age and comedication. Ther. Drug Monit. 34, 440â445 (2012).
de Wit, D., Guchelaar, H. J., den Hartigh, J., Gelderblom, H. & van Erp, N. P. Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov. Today 20, 18â36 (2015).
Patsalos, P. N. Drug interactions with the newer antiepileptic drugs (AEDs) â part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin. Pharmacokinet. 52, 927â966 (2013).
Houillier, C. et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75, 1560â1566 (2010).
Ducray, F. et al. Predictive and prognostic factors for gliomas. Expert Rev. Anticancer Ther. 11, 781â789 (2011).
Liubinas, S. V. et al. IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia 55, 1438â1443 (2014).
Zhang, C. B. et al. Correlation of IDH1/2 mutation with clinicopathologic factors and prognosis in anaplastic gliomas: a report of 203 patients from China. J. Cancer Res. Clin. Oncol. 140, 45â51 (2014).
Zhong, Z., Wang, Z., Wang, Y., You, G. & Jiang, T. IDH1/2 mutation is associated with seizure as an initial symptom in low-grade glioma: a report of 311 Chinese adult glioma patients. Epilepsy Res. 109, 100â105 (2015).
Kerkhof, M., Benit, C., Duran-Pena, A. & Vecht, C. J. Seizures in oligodendroglial tumors. CNS Oncol. 4, 347â356 (2015).
Berendsen, S. et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol. http://dx.doi.org/10.1093/neuonc/nov238 (2015).
de Groot, M. et al. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy. Epilepsia 53, 58â66 (2012).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2009).
US National Library of Science. ClinicalTrials.gov [online], (2009).
US National Library of Science. ClinicalTrials.gov [online], (2009).
US National Library of Science. ClinicalTrials.gov [online], (2009).
US National Library of Science. ClinicalTrials.gov [online], (2009).
US National Library of Science. ClinicalTrials.gov [online], (2016).
US National Library of Science. ClinicalTrials.gov [online], (2015).
US National Library of Science. ClinicalTrials.gov [online], (2016).
Booth, L. et al. HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biol. Ther. 15, 305â316 (2014).
Acknowledgements
The authors express their gratitude to Richard Miles (Institut du Cerveau et de la Moelle Epinière, Paris, France) and Johan Pallud (Neurosurgery Department, Paris Descartes University, Sainte-Anne Hospital, Paris, France) for reading the manuscript.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to all aspects of the manuscript.
Corresponding author
Ethics declarations
Competing interests
G.H. has received consulting and speakers' fees from Eisai. C.J.V. has received consulting and speakers' fees from UCB.
Rights and permissions
About this article
Cite this article
Huberfeld, G., Vecht, C. Seizures and gliomas â towards a single therapeutic approach. Nat Rev Neurol 12, 204â216 (2016). https://doi.org/10.1038/nrneurol.2016.26
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2016.26
This article is cited by
-
Seizure Management and Prophylaxis Considerations in Patients with Brain Tumors
Current Oncology Reports (2023)
-
Does epilepsy always indicate worse outcomes? A longitudinal follow-up analysis of 485 glioma patients
World Journal of Surgical Oncology (2022)
-
The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: a clinical retrospective study
Journal of Neurology (2022)
-
Expression changes in ion channel and immunity genes are associated with glioma-related epilepsy in patients with diffuse gliomas
Journal of Cancer Research and Clinical Oncology (2022)
-
Comprehensive analysis of the LncRNAs, MiRNAs, and MRNAs acting within the competing endogenous RNA network of LGG
Genetica (2022)