Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature

Abstract

Magnetic skyrmions are topologically protected whirling spin textures that can be stabilized in magnetic materials by an asymmetric exchange interaction between neighbouring spins that imposes a fixed chirality. Their small size, together with the robustness against external perturbations, make magnetic skyrmions potential storage bits in a novel generation of memory and logic devices. To this aim, their contribution to the electrical transport properties of a device must be characterized—however, the existing demonstrations are limited to low temperatures and mainly in magnetic materials with a B20 crystal structure. Here we combine concomitant magnetic force microscopy and Hall resistivity measurements to demonstrate the electrical detection of sub-100 nm skyrmions in a multilayered thin film at room temperature. Furthermore, we detect and analyse the Hall signal of a single skyrmion, which indicates that it arises from the anomalous Hall effect with a negligible contribution from the topological Hall effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Set-up for skyrmion electrical detection and imaging.
Fig. 2: RT detection of current-nucleated skyrmions.
Fig. 3: RT transverse resistivity due to skyrmions.
Fig. 4: Variation in Hall due to a single skyrmion.

Similar content being viewed by others

References

  1. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  Google Scholar 

  2. Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009).

    Article  Google Scholar 

  3. Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    Article  Google Scholar 

  4. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  Google Scholar 

  5. Li, Y. et al. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013).

    Article  Google Scholar 

  6. Porter, N. A., Gartside, J. C. & Marrows, C. H. Scattering mechanisms in textured FeGe thin films: magnetoresistance and the anomalous Hall effect. Phys. Rev. B 90, 024403 (2014).

    Article  Google Scholar 

  7. Du, H. et al. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat. Commun. 6, 7637 (2015).

    Article  Google Scholar 

  8. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    Article  Google Scholar 

  9. Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015).

    Article  Google Scholar 

  10. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?. J. Phys. D 44, 392001 (2011).

    Article  Google Scholar 

  11. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  Google Scholar 

  12. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  Google Scholar 

  13. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  Google Scholar 

  14. Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  Google Scholar 

  15. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  Google Scholar 

  16. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  Google Scholar 

  17. Yu, G. et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano Lett. 16, 1981–1988 (2016).

    Article  Google Scholar 

  18. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  Google Scholar 

  19. Jiang, W. et al. Mobile Néel skyrmions at room temperature: status and future. AIP Adv. 6, 055602 (2016).

    Article  Google Scholar 

  20. Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    Article  Google Scholar 

  21. Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    Article  Google Scholar 

  22. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  23. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  Google Scholar 

  24. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Article  Google Scholar 

  25. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  Google Scholar 

  26. Belmeguenai, M. et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405 (2015).

    Article  Google Scholar 

  27. Schott, M. et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012 (2017).

    Article  Google Scholar 

  28. Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

    Article  Google Scholar 

  29. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  Google Scholar 

  30. Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. E. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).

    Article  Google Scholar 

  31. Kim, J.-V. & Yoo, M.-W. Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 110, 132404 (2017).

    Article  Google Scholar 

  32. Baćani, M., Marioni, M. A., Schwenk, J. & Hug, H. J. How to measure the local Dzyaloshinskii–Moriya interaction in skyrmion thin-films multilayers. Preprint at https://arxiv.org/abs/1609.01615 (2016).

  33. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  Google Scholar 

  34. Kanazawa, N. et al. Discretized topological Hall effect emerging from skyrmions in constricted geometry. Phys. Rev. B 91, 041122 (2015).

    Article  Google Scholar 

  35. Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    Article  Google Scholar 

  36. Hamamoto, K., Ezawa, M. & Nagaosa, N. Purely electrical detection of a skyrmion in constricted geometry. Appl. Phys. Lett. 108, 112401 (2016).

    Article  Google Scholar 

  37. Ndiaye, P. B., Akosa, C. A. & Manchon, A. Topological Hall and spin Hall effects in disordered skyrmionic textures. Phys. Rev. B 95, 064426 (2017).

    Article  Google Scholar 

  38. Denisov, K. S., Rozhansky, I. V., Averkiev, N. S. & Lähderanta, E. A nontrivial crossover in topological Hall effect regimes. Sci. Rep. 7, 17204 (2017).

    Article  Google Scholar 

  39. Zeissler, K. et al. Direct imaging and electrical detection at room temperature of a single skyrmion. Preprint at https://arxiv.org/abs/1706.06024 (2017).

  40. Raju, M. et al. Evolution of chiral magnetic textures and their topological Hall signature in Ir/Fe/Co/Pt multilayer films. Preprint at https://arxiv.org/abs/1708.04084 (2017).

Download references

Acknowledgements

We acknowledge C. Moreau-Luchaire for participating in the sample preparation, A. Vecchiola for technical support in the MFM measurements, D. Pinna for support in the analysis of the skyrmion profiles and C. Moutafis, S. Finizio, P. Warnicke and J. Raabe for their technical support at the (PolLux) beamline at SLS, Paul Scherrer Institüt, Villigen, Switzerland. We acknowledge financial support from European Union grant MAGicSky No. FET-Open-665095.

Author information

Authors and Affiliations

Authors

Contributions

N.R., V.C. and A.F. conceived the project. S.C. grew the multilayer films. K.G. patterned the samples. D.M. acquired the MFM data, transport measurements and STXM, treated and analysed the data with the help of N.R., W.L., K.B. and V.C. D.M., N.R., V.C. and A.F. prepared the manuscript. All authors discussed and commented the manuscript.

Corresponding author

Correspondence to Vincent Cros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maccariello, D., Legrand, W., Reyren, N. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nature Nanotech 13, 233–237 (2018). https://doi.org/10.1038/s41565-017-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0044-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing