Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Key points
-
Virtually all people with Down syndrome (DS) have Alzheimer disease (AD) pathology by 40 years of age; this association facilitates an increased understanding of the temporal progression of AD pathogenesis and provides unique insights for AD in the general population.
-
Understanding the role of amyloid precursor protein in DS might lead to a greater understanding of its role in both sporadic AD and familial AD in the general population.
-
The study of neuroinflammation in DS might provide unique insights into AD in the general population and highlight key pathways that might be amenable to therapeutic intervention.
-
Investigation of cerebrovascular pathology and its role in dementia might be simplified by the study of DS cohorts and lead to novel hypotheses regarding the causes and consequences of cerebral amyloid angiopathy.
-
Comorbidities in DS, such as sleep disturbances, seizures and psychiatric conditions, overlap with those conditions seen in AD in the general population.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jervis, G. A. Early senile dementia in mongoloid idiocy. Am. J. Psychiatry 105, 102â106 (1948).
Struwe, F. Histopathologische Untersuchungen uber Entstehung und Wesen der senilen Plaques. Z. Ges. Neurol. Psychiat. 122, 291â307 (1929).
Bertrand, I. & Koffas, D. Cas dâidioti mongolienne adulte avec nombreuses plaques senile et concretions calcaires pallidales. Rev. Neurol. 78, 338 (1946).
Mann, D. M. A. The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43, 99â136 (1988).
Hardy, J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the âamyloid cascade hypothesisâ. FEBS J. 284, 1040â1044 (2017).
Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimerâs disease at 25 years. EMBO Mol. Med. 8, 595â608 (2016).
Head, E., Helman, A. M., Powell, D. & Schmitt, F. A. Down syndrome, beta-amyloid and neuroimaging. Free Radic. Biol. Med. 114, 102â109 (2018).
Glenner, G. G. & Wong, C. W. Alzheimerâs disease and Downâs syndrome sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 120, 885â890 (1984).
Holler, C. J. et al. BACE2 expression increases in human neurodegenerative disease. Am. J. Pathol. 180, 337â350 (2012).
Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M. & Kasselman, L. J. Amyloid toxicity in Alzheimerâs disease. Rev. Neurosci. 29, 613â627 (2018).
Di Domenico, F. et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimerâs disease neuropathology: redox proteomics analysis of human brain. Biochim. Biophys. Acta 1832, 1249â1259 (2013).
Hartley, D. et al. Down syndrome and Alzheimerâs disease: common pathways, common goals. Alzheimers Dement. 11, 700â709 (2015).
Ballard, C., Mobley, W., Hardy, J., Williams, G. & Corbett, A. Dementia in Downâs syndrome. Lancet Neurol. 15, 622â636 (2016).
Prasher, V. P. & Filer, A. Behavioural disturbance in people with Downâs syndrome and dementia. J. Intellect. Disabil. Res. 39, 432â436 (1995).
Holland, A. J., Hon, J., Huppert, F. A. & Stevens, F. Incidence and course of dementia in people with Downâs syndrome: findings from a population-based study. J. Intellect. Disabil. Res. 44, 138â146 (2000).
Zigman, W. B., Schupf, N., Sersen, E. & Silverman, W. Prevalence of dementia in adults with and without Down syndrome. Am. J. Ment. Retard. 100, 403â412 (1996).
McCarron, M. et al. A prospective 20-year longitudinal follow-up of dementia in persons with Down syndrome. J. Intellect. Disabil. Res. 61, 843â852 (2017).
Jarrett, S. The meaning of âcommunityâ in the lives of people with intellectual disabilities: an historical perspective. Int. J. Dev. Disabil. 61, 107â112 (2015).
Devenny, D. A. et al. Normal ageing in adults with Downâs syndrome: a longitudinal study. J. Intellect. Disabil. Res. 40, 208â221 (1996).
Margallo-Lana, M. L. et al. Cognitive decline in Down syndrome. Arch. Neurol. 60, 1024 (2003).
Rohn, T. T., McCarty, K. L., Love, J. E. & Head, E. Is apolipoprotein E4 an important risk factor for dementia in persons with Down syndrome? J. Parkinsons Dis. Alzheimers Dis. 1, 7 (2014).
Zigman, W. B., Jenkins, E. C., Tycko, B., Schupf, N. & Silverman, W. Mortality is associated with apolipoprotein E epsilon4 in nondemented adults with Down syndrome. Neurosci. Lett. 390, 93â97 (2005).
Prasher, V. P. et al. Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimerâs disease and mortality in persons with Down syndrome. Int. J. Geriatr. Psychiatry 23, 1134â1140 (2008).
Schupf, N. et al. Onset of dementia is associated with apolipoprotein E epsilon4 in Downâs syndrome. Ann. Neurol. 40, 799â801 (1996).
Eisenstein, M. Genetics: finding risk factors. Nature 475, S20âS22 (2011).
Huynh, T. V., Davis, A. A., Ulrich, J. D. & Holtzman, D. M. Apolipoprotein E and Alzheimerâs disease: the influence of apolipoprotein E on amyloid-beta and other amyloidogenic proteins. J. Lipid Res. 58, 824â836 (2017).
Grimm, M. O. W., Michaelson, D. M. & Hartmann, T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimerâs disease: a rationale for multi-nutrient dementia prevention. J. Lipid Res. 58, 2083â2101 (2017).
Rohn, T. T. Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimerâs disease. Int. J. Mol. Sci. 14, 14908â14922 (2013).
Day, R. J., McCarty, K. L., Ockerse, K. E., Head, E. &Â Rohn, T. T. Proteolytic cleavage of apolipoprotein E in the Down syndrome brain. Aging Dis. 7, 267â277 (2016).
Rohn, T. T., Catlin, L. W., Coonse, K. G. & Habig, J. W. Identification of an amino-terminal fragment of apolipoprotein E4 that localizes to neurofibrillary tangles of the Alzheimerâs disease brain. Brain Res. 1475, 106â115 (2012).
Zhao, L., Woody, S. K. & Chhibber, A. Estrogen receptor beta in Alzheimerâs disease: from mechanisms to therapeutics. Ageing Res. Rev. 24, 178â190 (2015).
Yaffe, K., Haan, M., Byers, A., Tangen, C. & Kuller, L. Estrogen use, APOE, and cognitive decline: evidence of geneâenvironment interaction. Neurology 54, 1949â1954 (2000).
Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-cognitive and affective study. PLOS Med. 12, e1001833 (2015).
Henderson, V. W. Alzheimerâs disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J. Steroid Biochem. Mol. Biol. 142, 99â106 (2014).
Schupf, N. et al. Onset of dementia is associated with age at menopause in women with Downâs syndrome. Ann. Neurol. 54, 433â438 (2003).
Patel, B. N., Seltzer, G. B., Wu, H. S. & Schupf, N. Effect of menopause on cognitive performance in women with Down syndrome. Neuroreport 12, 2659â2662 (2001).
Mosconi, L. et al. Perimenopause and emergence of an Alzheimerâs bioenergetic phenotype in brain and periphery. PLOS ONE 12, e0185926 (2017).
Papavassiliou, P., Charalsawadi, C., Rafferty, K. & Jackson-Cook, C. Mosaicism for trisomy 21: a review. Am. J. Med. Genet. 167A, 26â39 (2015).
Ringman, J. M., Rao, P. N., Lu, P. H. & Cederbaum, S. Mosaicism for trisomy 21 in a patient with young-onset dementia: a case report and brief literature review. Arch. Neurol. 65, 412â415 (2008).
Potter, H., Granic, A. & Caneus, J. Role of trisomy 21 mosaicism in sporadic and familial Alzheimerâs disease. Curr. Alzheimer Res. 13, 7â17 (2016).
Leija-Salazar, M., Piette, C. L. & Proukakis, C. Somatic mutations in neurodegeneration. Neuropathol. Appl. Neurobiol. 44, 267â285 (2018).
Wiseman, F. K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16, 564â574 (2015).
Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24â26 (2006).
Cabrejo, L. et al. Phenotype associated with APP duplication in five families. Brain 129, 2966â2976 (2006).
Wallon, D. et al. The French series of autosomal dominant early onset Alzheimerâs disease cases: mutation spectrum and cerebrospinal fluid biomarkers. J. Alzheimers Dis. 30, 847â856 (2012).
Hooli, B. V. et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 78, 1250â1257 (2012).
Jones, E. L. et al. Evidence that PICALM affects age at onset of Alzheimerâs dementia in Down syndrome. Neurobiol. Aging 34, 2441.e1â2441.e5 (2013).
Lee, J. H. et al. Candidate gene analysis for Alzheimerâs disease in adults with Down syndrome. Neurobiol. Aging 56, 150â158 (2017).
Schupf, N. et al. Candidate genes for Alzheimerâs disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol. Aging 36, 2907.e1â2907.e10 (2015).
Do, C., Xing, Z., Yu, Y. E. & Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models. Epigenomics 9, 189â207 (2017).
Megarbane, A. et al. The intellectual disability of trisomy 21: differences in gene expression in a case series of patients with lower and higher IQ. Eur. J. Hum. Genet. 21, 1253â1259 (2013).
Weber, D. et al. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes. J. Mol. Cell Cardiol. 79, 79â88 (2015).
Bacalini, M. G. et al. Identification of a DNA methylation signature in blood cells from persons with Down Syndrome. Aging 7, 82â96 (2015).
Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491â495 (2015).
Narayan, P. J., Lill, C., Faull, R., Curtis, M. A. &Â Dragunow, M. Increased acetyl and total histone levels in post-mortem Alzheimerâs disease brain. Neurobiol. Dis. 74, 281â294 (2015).
Fyfe, I. Alzheimer disease: epigenetics links ageing with Alzheimer disease. Nat. Rev. Neurol. 14, 254 (2018).
Edgin, J. O., Clark, C. A., Massand, E. & Karmiloff-Smith, A. Building an adaptive brain across development: targets for neurorehabilitation must begin in infancy. Front. Behav. Neurosci. 9, 232 (2015).
Schmidt-Sidor, B., Wisniewski, K. E., Shepard, T. H. &Â Sersen, E. A. Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 9, 181â190 (1990).
Guidi, S. et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 18, 180â197 (2008).
Sosa, L. J. et al. Dosage of amyloid precursor protein affects axonal contact guidance in Down syndrome. FASEB J. 28, 195â205 (2014).
Dawkins, E. & Small, D. H. Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimerâs disease. J. Neurochem. 129, 756â769 (2014).
Neale, N., Padilla, C., Fonseca, L. M., Holland, T. & Zaman, S. Neuroimaging and other modalities to assess Alzheimerâs disease in Down syndrome. Neuroimage Clin. 17, 263â271 (2018).
Teipel, S. J. et al. Age-related cortical grey matter reductions in non-demented Downâs syndrome adults determined by MRI with voxel-based morphometry. Brain 127, 811â824 (2004).
Teipel, S. J. & Hampel, H. Neuroanatomy of Down syndrome in vivo: a model of preclinical Alzheimerâs disease. Behav. Genet. 36, 405â415 (2006).
Powell, D. et al. Frontal white matter integrity in adults with Down syndrome with and without dementia. Neurobiol. Aging 35, 1562â1569 (2014).
Rumble, B. et al. Amyloid A4 and its precursor in Downâs syndrome and Alzheimerâs disease. N. Engl. J. Med. 320, 1446â1462 (1989).
Head, E. & Lott, I. T. Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol. 17, 95â100 (2004).
Head, E., Powell, D., Gold, B. T. & Schmitt, F. A. Alzheimerâs disease in Down syndrome. Eur. J. Neurodegener. Dis. 1, 353â364 (2012).
Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid beta-peptides and APOE in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16â32 (1996).
Fonseca, M. I., Head, E., Velazquez, P., Cotman, C. W. & Tenner, A. J. The presence of isoaspartic acid in beta-amyloid plaques indicates plaque age. Exp. Neurol. 157, 277â288 (1999).
Azizeh, B. Y. et al. Molecular dating of senile plaques in the brains of individuals with Down syndrome and in aged dogs. Exp. Neurol. 163, 111â122 (2000).
Leverenz, J. B. & Raskind, M. A. Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp. Neurol. 150, 296â304 (1998).
Stoltzner, S. E. et al. Temporal accrual of complement proteins in amyloid plaques in Downâs syndrome with Alzheimerâs disease. Am. J. Pathol. 156, 489â499 (2000).
Nistor, M. et al. Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol. Aging 28, 1493â1506 (2007).
Cenini, G. et al. Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochim. Biophys. Acta 1822, 130â138 (2012).
Carmona-Iragui, M. et al. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimerâs disease. Alzheimers Dement. 13, 1251â1260 (2017).
Prasher, V. P. et al. Molecular mapping of Alzheimer-type dementia in Downâs syndrome. Ann. Neurol. 43, 380â383 (1998).
Doran, E. et al. Down syndrome, partial trisomy 21, and absence of Alzheimerâs disease: the role of APP. J. Alzheimers Dis. 56, 459â470 (2017).
Sperling, R., Mormino, E. & Johnson, K. The evolution of preclinical Alzheimerâs disease: implications for prevention trials. Neuron 84, 608â622 (2014).
Cohen, A. D. & Klunk, W. E. Early detection of Alzheimerâs disease using PiB and FDG PET. Neurobiol. Dis. 72A, 117â122 (2014).
Cohen Kadosh, K., Johnson, M. H., Dick, F., Cohen Kadosh, R. & Blakemore, S. J. Effects of age, task performance, and structural brain development on face processing. Cereb. Cortex 23, 1630â1642 (2013).
Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446â452 (2006).
Klunk, W. E. et al. Imaging brain amyloid in Alzheimerâs disease with Pittsburgh compound-B. Ann. Neurol. 55, 306â319 (2004).
Handen, B. L. et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 8, 496â501 (2012).
Annus, T. et al. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. 12, 538â545 (2016).
Lao, P. J. et al. The effects of normal aging on amyloid-beta deposition in nondemented adults with Down syndrome as imaged by carbon 11-labeled Pittsburgh compound B. Alzheimers Dement. 12, 380â390 (2016).
Klunk, W. E. et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J. Neurosci. 27, 6174â6184 (2007).
Villemagne, V. L. et al. High striatal amyloid beta-peptide deposition across different autosomal Alzheimer disease mutation types. Arch. Neurol. 66, 1537â1544 (2009).
Koivunen, J. et al. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimerâs disease. Brain 131, 1845â1853 (2008).
Mann, D. M. & Iwatsubo, T. Diffuse plaques in the cerebellum and corpus striatum in Downâs syndrome contain amyloid beta protein (A beta) only in the form of A beta 42(43). Neurodegeneration 5, 115â120 (1996).
Hartley, S. L. et al. Cognitive functioning in relation to brain amyloid-beta in healthy adults with Down syndrome. Brain 137, 2556â2563 (2014).
Landt, J. et al. Using positron emission tomography and carbon 11-labeled Pittsburgh compound B to image brain fibrillar beta-amyloid in adults with Down syndrome: safety, acceptability, and feasibility. Arch. Neurol. 68, 890â896 (2011).
Hartley, S. L. et al. Cognitive decline and brain amyloid-beta accumulation across 3 years in adults with Down syndrome. Neurobiol. Aging 58, 68â76 (2017).
Lao, P. J. et al. Alzheimer-like pattern of hypometabolism emerges with elevated amyloid-beta burden in Down syndrome. J. Alzheimers Dis. 61, 631â644 (2018).
Sabbagh, M. N. et al. Florbetapir PET, FDG PET, and MRI in Down syndrome individuals with and without Alzheimerâs dementia. Alzheimers Dement. 11, 994â1004 (2015).
Sabbagh, M. N. et al. Positron emission tomography and neuropathologic estimates of fibrillar amyloid-beta in a patient with Down syndrome and Alzheimer disease. Arch. Neurol. 68, 1461â1466 (2011).
Rafii, M. S. et al. The Down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimerâs disease biomarkers in Down syndrome. Front. Behav. Neurosci. 9, 239 (2015).
Nelson, L. D. et al. Positron emission tomography of brain beta-amyloid and tau levels in adults with Down syndrome. Arch. Neurol. 68, 768â774 (2011).
Head, E. et al. Parallel compensatory and pathological events associated with tau pathology in middle aged individuals with Down syndrome. J. Neuropathol. Exp. Neurol. 62, 917â926 (2003).
Hof, P. R. et al. Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Downâs syndrome. Quantitative regional analysis and comparison with Alzheimerâs disease. Arch. Neurol. 52, 379â391 (1995).
Hyman, B. T., West, H. L., Rebeck, G. W., Lai, F. & Mann, D. M. Neuropathological changes in Downâs syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52, 373â378 (1995).
Mann, D. M. & Esiri, M. M. The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Downâs syndrome. J. Neurol. Sci. 89, 169â179 (1989).
Mann, D. M., Royston, M. C. & Ravindra, C. R. Some morphometric observations on the brains of patients with Downâs syndrome: their relationship to age and dementia. J. Neurol. Sci. 99, 153â164 (1990).
Head, E., Lott, I. T., Wilcock, D. M. & Lemere, C. A. Aging in Down syndrome and the development of Alzheimerâs disease neuropathology. Curr. Alzheimer Res. 13, 18â29 (2016).
Dowjat, W. K. et al. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77â81 (2007).
Kimura, R. et al. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15â23 (2007).
Liu, F. et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224â3233 (2008).
Ryoo, S. R. et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850â34857 (2007).
Wegiel, J. et al. The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol. 116, 391â407 (2008).
Wegiel, J. et al. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J. Neuropathol. Exp. Neurol. 70, 36â50 (2011).
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205â2232 (2003).
Klee, C. B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367â13370 (1998).
Ermak, G., Harris, C. D., Battocchio, D. & Davies, K. J. RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100â2109 (2006).
Dekker, A. D., Fortea, J., Blesa, R. & De Deyn, P. P. Cerebrospinal fluid biomarkers for Alzheimerâs disease in Down syndrome. Alzheimers Dement. 8, 1â10 (2017).
Kasai, T. et al. Increased levels of plasma total tau in adult Down syndrome. PLOS ONE 12, e0188802 (2017).
Lee, N. C. et al. Blood beta-amyloid and tau in Down syndrome: a comparison with Alzheimerâs disease. Front. Aging Neurosci. 8, 316 (2016).
Hamlett, E. D. et al. Neuronal exosomes reveal Alzheimerâs disease biomarkers in Down syndrome. Alzheimers Dement. 13, 541â549 (2016).
Rafii, M. S. et al. PET imaging of tau pathology and relationship to amyloid, longitudinal MRI, and cognitive change in Down syndrome: results from the Down Syndrome Biomarker Initiative (DSBI). J. Alzheimers Dis. 60, 439â450 (2017).
Wilcock, D. M. Neuroinflammation in the aging Down syndrome brain; lessons from Alzheimerâs disease. Curr. Gerontol. Geriatr. Res. 2012, 170276 (2012).
Wilcock, D. M. & Griffin, W. S. Downâs syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflammation 10, 84 (2013).
Akiyama, H. et al. Inflammation and Alzheimerâs disease. Neurobiol. Aging 21, 383â421 (2000).
Xue, Q. S. & Streit, W. J. Microglial pathology in Down syndrome. Acta Neuropathol. 122, 455â466 (2011).
Di Bona, D. et al. Association between the interleukin-1beta polymorphisms and Alzheimerâs disease: a systematic review and meta-analysis. Brain Res. Rev. 59, 155â163 (2008).
Karch, C. M. & Goate, A. M. Alzheimerâs disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43â51 (2015).
Griffin, W. S. et al. Brain interleukin I and S-100 immunoreactivity are elevated in Down syndrome and Alzheimerâs disease. Proc. Natl Acad. Sci. USA 86, 7611â7615 (1989).
Head, E. et al. Complement association with neurons and beta-amyloid deposition in the brains of aged individuals with Down Syndrome. Neurobiol. Dis. 8, 252â265 (2001).
Wilcock, D. M. et al. Down syndrome individuals with Alzheimerâs disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimerâs disease. Neurobiol. Aging 36, 2468â2474 (2015).
Kamer, A. R. et al. Periodontal diseaseâs contribution to Alzheimerâs disease progression in Down syndrome. Alzheimers Dement. 2, 49â57 (2016).
Rodrigues, R. et al. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters. Clin. Chim. Acta 433, 105â110 (2014).
Iulita, M. F. et al. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement. 12, 1132â1148 (2016).
Snyder, H. M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimerâs disease. Alzheimers Dement. 11, 710â717 (2015).
Jellinger, K. A. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front. Aging Neurosci. 5, 17 (2013).
Provenzano, F. A. et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurol. 70, 455â461 (2013).
Vinters, H. V. Cerebral amyloid angiopathy. A critical review. Stroke 18, 311â324 (1987).
Ikeda, S. et al. Variability of beta-amyloid protein deposited lesions in Downâs syndrome brains. Tohoku J. Exp. Med. 174, 189â198 (1994).
Lai, F. & Williams, M. D. A prospective study of Alzheimer disease in Down syndrome. Arch. Neurol. 46, 849â853 (1989).
Belza, M. G. & Urich, H. Cerebral amyloid angiopathy in Downâs syndrome. Clin. Neuropathol. 5, 257â260 (1986).
Head, E. et al. Cerebrovascular pathology in Down syndrome and Alzheimer disease. Acta Neuropathol. Commun. 5, 93 (2017).
Murdoch, J. C., Rodger, J. C., Rao, S. S., Fletcher, C. D. & Dunnigan, M. G. Downâs syndrome: an atheroma-free model? BMJ 2, 226â228 (1977).
Pucci, F. et al. Blood pressure levels and body mass index in Brazilian adults with Down syndrome. Sao Paulo Med. J. 134, 330â334 (2016).
Matthews, D. C. et al. Dissociation of Down syndrome and Alzheimerâs disease effects with imaging. Alzheimers Dement. 2, 69â81 (2016).
Haier, R. J., Head, K., Head, E. & Lott, I. T. Neuroimaging of individuals with Downâs syndrome at-risk for dementia: evidence for possible compensatory events. Neuroimage 39, 1324â1332 (2008).
Garibotto, V. et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimerâs disease in the context of a structured 5-phase development framework. Neurobiol. Aging 52, 183â195 (2017).
Barone, E., Arena, A., Head, E., Butterfield, D. A. & Perluigi, M. Disturbance of redox homeostasis in Down syndrome: role of iron dysmetabolism. Free Radic. Biol. Med. 114, 84â93 (2018).
Di Domenico, F. et al. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic. Biol. Med. 71, 270â280 (2014).
Perluigi, M. & Butterfield, D. A. Oxidative stress and Down syndrome: a route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012, 724904 (2012).
Perluigi, M. et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim. Biophys. Acta 1842, 1144â1153 (2014).
Colacurcio, D. J., Pensalfini, A., Jiang, Y. & Nixon, R. A. Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of Down syndrome and Alzheimerâs Disease. Free Radic. Biol. Med. 114, 40â51 (2018).
Phillips, C. et al. Noradrenergic system in Down syndrome and Alzheimerâs disease a target for therapy. Curr. Alzheimer Res. 13, 68â83 (2016).
Lockrow, J. P., Fortress, A. M. & Granholm, A. C. Age-related neurodegeneration and memory loss in Down syndrome. Curr. Gerontol. Geriatr. Res. 2012, 463909 (2012).
Martin, S. B. et al. Synaptophysin and synaptojanin-1 in Down syndrome are differentially affected by Alzheimerâs disease. J. Alzheimers Dis. 42, 767â775 (2014).
Head, E., Lott, I. T., Patterson, D., Doran, E. & Haier, R. J. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J. Alzheimers Dis. 11, 61â76 (2007).
Jenkins, E. C. et al. Longitudinal telomere shortening and early Alzheimerâs disease progression in adults with Down syndrome. Am. J. Med. Genet. B 174, 772â778 (2017).
Chen, X. Q., Sawa, M. & Mobley, W. C. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic. Biol. Med. 114, 52â61 (2018).
Iulita, M. F., Caraci, F. & Cuello, A. C. A. Link between nerve growth factor metabolic deregulation and amyloid-beta-driven inflammation in Down syndrome. CNSÂ Neurol. Disord. Drug Targets 15, 434â447 (2016).
Iulita, M. F. & Cuello, A. C. The NGF metabolic pathway in the CNS and its dysregulation in Down syndrome and Alzheimerâs disease. Curr. Alzheimer Res. 13, 53â67 (2016).
Zigman, W. B. Atypical aging in Down syndrome. Dev. Disabil. Res. Rev. 18, 51â67 (2013).
Cheignon, C. et al. Oxidative stress and the amyloid beta peptide in Alzheimerâs disease. Redox Biol. 14, 450â464 (2018).
Helguera, P. et al. Adaptive downregulation of mitochondrial function in Down syndrome. Cell Metab. 17, 132â140 (2013).
Carfi, A. et al. Characteristics of adults with Down syndrome: prevalence of age-related conditions. Front. Med. 1, 51 (2014).
Englund, A., Jonsson, B., Zander, C. S., Gustafsson, J. & Anneren, G. Changes in mortality and causes of death in the Swedish Down syndrome population. Am. J. Med. Genet. 161A, 642â649 (2013).
Valenti, D. et al. Mitochondria as pharmacological targets in Down syndrome. Free Radic. Biol. Med. 114, 69â83 (2018).
Hithersay, R., Hamburg, S., Knight, B. & Strydom, A. Cognitive decline and dementia in Down syndrome. Curr. Opin. Psychiatry 30, 102â107 (2017).
McKhann, G. M. et al. The diagnosis of dementia due to Alzheimerâs disease: recommendations from the National Institute on Aging-Alzheimerâs Association workgroups on diagnostic guidelines for Alzheimerâs disease. Alzheimers Dement. 7, 263â269 (2011).
Edgin, J. O. et al. Development and validation of the Arizona Cognitive Test Battery for Down syndrome. J. Neurodev. Disord. 2, 149â164 (2010).
Edgin, J. O. et al. The Arizona Cognitive Test Battery for Down syndrome: test-retest reliability and practice effects. Am. J. Intellect. Dev. Disabil. 122, 215â234 (2017).
Lautarescu, B. A., Holland, A. J. & Zaman, S. H. The early presentation of dementia in people with Down syndrome: a systematic review of longitudinal studies. Neuropsychol. Rev. 27, 31â45 (2017).
Ball, S. L., Holland, A. J., Treppner, P., Watson, P. C. & Huppert, F. A. Executive dysfunction and its association with personality and behaviour changes in the development of Alzheimerâs disease in adults with Down syndrome and mild to moderate learning disabilities. Br. J. Clin. Psychol. 47, 1â29 (2008).
Weintraub, S. et al. Version 3 of the Alzheimer Disease Centersâ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis. Assoc. Disord. 32, 10â17 (2017).
Belleville, S. et al. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimerâs type dementia in older adults: a systematic review and meta-analysis. Neuropsychol. Rev. 27, 328â353 (2017).
Sinai, A., Hassiotis, A., Rantell, K. & Strydom, A. Assessing specific cognitive deficits associated with dementia in older adults with Down syndrome: use and validity of the Arizona Cognitive Test Battery (ACTB). PLOS ONE 11, e0153917 (2016).
Krinsky-McHale, S. J. & Silverman, W. Dementia and mild cognitive impairment in adults with intellectual disability: issues of diagnosis. Dev. Disabil. Res. Rev. 18, 31â42 (2013).
Lu, P. H. & Lee, G. J. The role of neuropsychology in the assessment of the cognitively impaired elderly. Neurol. Clin. 35, 191â206 (2017).
Lanctot, K. L. et al. Neuropsychiatric signs and symptoms of Alzheimerâs disease: new treatment paradigms. Alzheimers Dement. 3, 440â449 (2017).
Dekker, A. D. et al. Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimerâs disease? Cortex 73, 36â61 (2015).
Dick, M. B., Doran, E., Phelan, M. & Lott, I. T. Cognitive profiles on the Severe Impairment Battery are similar in Alzheimer disease and Down syndrome with dementia. Alzheimer Dis. Assoc. Disord. 30, 251â257 (2016).
Glenn, S. M. & Cunningham, C. C. Parentsâ reports of young people with Down syndrome talking out loud to themselves. Ment. Retard. 38, 498â505 (2000).
Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303â308 (1999).
Kryscio, R. J., Schmitt, F. A., Salazar, J. C., Mendiondo, M. S. & Markesbery, W. R. Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology 66, 828â832 (2006).
Karmiloff-Smith, A. et al. The importance of understanding individual differences in Down syndrome. F1000Res. 5, 389 (2016).
Anderson-Mooney, A. J., Schmitt, F. A., Head, E., Lott, I. T. & Heilman, K. M. Gait dyspraxia as a clinical marker of cognitive decline in Down syndrome: a review of theory and proposed mechanisms. Brain Cogn. 104, 48â57 (2016).
Chhetri, J. K., Chan, P., Vellas, B. & Cesari, M. Motoric cognitive risk syndrome: predictor of dementia and age-related negative outcomes. Front. Med. 4, 166 (2017).
Scherder, E. et al. Gait in ageing and associated dementias; its relationship with cognition. Neurosci. Biobehav. Rev. 31, 485â497 (2007).
Beauchet, O. et al. Association between high variability of gait speed and mild cognitive impairment: a cross-sectional pilot study. J. Am. Geriatr. Soc. 59, 1973â1974 (2011).
Chen, H. L., Yu, W. H. & Yeh, H. C. Obstacle crossing in 7â9-year-old children with Down syndrome. Res. Dev. Disabil. 48, 202â210 (2016).
Tian, Q. et al. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review. Neurosci. Biobehav. Rev. 74, 149â162 (2017).
Menendez, M. Down syndrome, Alzheimerâs disease and seizures. Brain Dev. 27, 246â252 (2005).
Gholipour, T., Mitchell, S., Sarkis, R. A. & Chemali, Z. The clinical and neurobehavioral course of Down syndrome and dementia with or without new-onset epilepsy. Epilepsy Behav. 68, 11â16 (2017).
Araujo, B. H., Torres, L. B. & Guilhoto, L. M. Cerebal overinhibition could be the basis for the high prevalence of epilepsy in persons with Down syndrome. Epilepsy Behav. 53, 120â125 (2015).
dâOrsi, G. & Specchio, L. M. & Apulian Study Group on Senile Myoclonic Epilepsy. Progressive myoclonus epilepsy in Down syndrome patients with dementia. J. Â Neurol. 261, 1584â1597 (2014).
Lehesjoki, A. E. Molecular background of progressive myoclonus epilepsy. EMBO J. 22, 3473â3478 (2003).
Lott, I. T. et al. Down syndrome and dementia: seizures and cognitive decline. J. Alzheimers Dis. 29, 177â185 (2012).
Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimerâs disease: causes and clinical relevance. Lancet Neurol. 16, 311â322 (2017).
Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085â1092 (2016).
Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimerâs disease. Ann. Neurol. 80, 858â870 (2016).
Shea, Y. F. et al. Novel presenilin 1 mutation (p. F386I) in a Chinese family with early-onset Alzheimerâs disease. Neurobiol. Aging 50, 168.e9â168.e11 (2017).
Kleen, J. K., Wu, E. X., Holmes, G. L., Scott, R. C. & Lenck-Santini, P. P. Enhanced oscillatory activity in the hippocampalâprefrontal network is related to short-term memory function after early-life seizures. J. Neurosci. 31, 15397â15406 (2011).
Noebels, J. A perfect storm: converging paths of epilepsy and Alzheimerâs dementia intersect in the hippocampal formation. Epilepsia 52 (Suppl. 1), 39â46 (2011).
Chan, J., Jones, N. C., Bush, A. I., OâBrien, T. J. &Â Kwan, P. A mouse model of Alzheimerâs disease displays increased susceptibility to kindling and seizure-associated death. Epilepsia 56, e73âe77 (2015).
Salehi, A. et al. Increased App expression in a mouse model of Downâs syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29â42 (2006).
Trois, M. S. et al. Obstructive sleep apnea in adults with Down syndrome. J. Clin. Sleep Med. 5, 317â323 (2009).
Jayaratne, Y. S. N. et al. The facial morphology in Down syndrome: a 3D comparison of patients with and without obstructive sleep apnea. Am. J. Med. Genet. 173A, 3013â3021 (2017).
Capone, G. T., Aidikoff, J. M., Taylor, K. & Rykiel, N. Adolescents and young adults with Down syndrome presenting to a medical clinic with depression: co-morbid obstructive sleep apnea. Am. J. Med. Genet. 161A, 2188â2196 (2013).
Breslin, J. et al. Obstructive sleep apnea syndrome and cognition in Down syndrome. Dev. Med. Child Neurol. 56, 657â664 (2014).
Worley, G. et al. Down syndrome disintegrative disorder: new-onset autistic regression, dementia, and insomnia in older children and adolescents with Down syndrome. J. Child Neurol. 30, 1147â1152 (2015).
Fernandez, F. & Edgin, J. O. Poor sleep as a precursor to cognitive decline in Down syndrome: a hypothesis. J. Alzheimers Dis. Parkinsonism 3, 124 (2013).
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373â377 (2013).
Polsek, D. et al. Obstructive sleep apnoea and Alzheimerâs disease: in search of shared pathomechanisms. Neurosci. Biobehav. Rev. 86, 142â149 (2018).
Mander, B. A., Winer, J. R., Jagust, W. J. & Walker, M. P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimerâs disease? Trends Neurosci. 39, 552â566 (2016).
Lavigne, J. et al. Thyroid dysfunction in patients with Down syndrome: results from a multi-institutional registry study. Am. J. Med. Genet. 173A, 1539â1545 (2017).
King, K., OâGorman, C. & Gallagher, S. Thyroid dysfunction in children with Down syndrome: a literature review. Ir. J. Med. Sci. 183, 1â6 (2014).
Iughetti, L. et al. Ten-year longitudinal study of thyroid function in children with Downâs syndrome. Horm. Res. Paediatr. 82, 113â121 (2014).
Guaraldi, F. et al. Endocrine autoimmunity in Downâs syndrome. Front. Horm. Res. 48, 133â146 (2017).
Carsetti, R. et al. Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome. Eur. J. Immunol. 45, 903â914 (2015).
Chaker, L. et al. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging. Neurobiol. Aging 61, 44â51 (2018).
Tan, Z. S. & Vasan, R. S. Thyroid function and Alzheimerâs disease. J. Alzheimers Dis. 16, 503â507 (2009).
Kinnear, D. et al. Prevalence of physical conditions and multimorbidity in a cohort of adults with intellectual disabilities with and without Down syndrome: cross-sectional study. BMJ Open 8, e018292 (2018).
Maatta, T. et al. Healthcare and guidelines: a population-based survey of recorded medical problems and health surveillance for people with Down syndrome. J. Intellect. Dev. Disabil. 36, 118â126 (2011).
Santoro, S. L., Martin, L. J., Pleatman, S. I. & Hopkin, R. J. Stakeholder buy-in and physician education improve adherence to guidelines for Down syndrome. J. Pediatr. 171, 262â268 (2016).
Wexler, I. D. et al. Optimizing health care for individuals with Down syndrome in Israel. Isr. Med. Assoc. J. 11, 655â659 (2009).
Capone, G. T. et al. Co-occurring medical conditions in adults with Down syndrome: a systematic review toward the development of health care guidelines. Am. J. Med. Genet. 176A, 116â133 (2018).
Livingstone, N., Hanratty, J., McShane, R. & Macdonald, G. Pharmacological interventions for cognitive decline in people with Down syndrome. Cochrane Database Syst. Rev. 10, CD011546 (2015).
Castro, P., Zaman, S. & Holland, A. Alzheimerâs disease in people with Downâs syndrome: the prospects for and the challenges of developing preventative treatments. J. Neurol. 264, 804â813 (2017).
Nelson, L. & Tabet, N. Slowing the progression of Alzheimerâs disease; what works? Ageing Res. Rev. 23, 193â209 (2015).
Hefti, E. & Blanco, J. G. Pharmacotherapeutic considerations for individuals with Down syndrome. Pharmacotherapy 37, 214â220 (2017).
Hom, C. L. et al. The relationship between living arrangement and adherence to antiepileptic medications among individuals with developmental disabilities. J. Intellect. Disabil. Res. 59, 48â54 (2015).
Rafii, M. S. Improving memory and cognition in individuals with Down syndrome. CNS Drugs 30, 567â573 (2016).
Rockwood, K., Fay, S., Jarrett, P. & Asp, E. Effect of galantamine on verbal repetition in AD: a secondary analysis of the VISTA trial. Neurology 68, 1116â1121 (2007).
Rockwood, K., Howlett, S. E., Hoffman, D., Schindler, R. & Mitnitski, A. Clinical meaningfulness of Alzheimerâs Disease Assessment Scale-Cognitive subscale change in relation to goal attainment in patients on cholinesterase inhibitors. Alzheimers Dement. 13, 1098â1106 (2017).
Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147â163 (2017).
Herault, Y. et al. Rodent models in Down syndrome research: impact and future opportunities. Dis. Model. Mech. 10, 1165â1186 (2017).
Choong, X. Y., Tosh, J. L., Pulford, L. J. & Fisher, E. M. Dissecting Alzheimer disease in Down syndrome using mouse models. Front. Behav. Neurosci. 9, 268 (2015).
Gardiner, K. et al. Down syndrome: from understanding the neurobiology to therapy. J. Neurosci. 30, 14943â14945 (2010).
Gardiner, K. J. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des. Devel. Ther. 9, 103â125 (2015).
Sasaguri, H. et al. APP mouse models for Alzheimerâs disease preclinical studies. EMBO J. 36, 2473â2487 (2017).
Wilcock, D. M., Schmitt, F. A. & Head, E. Cerebrovascular contributions to aging and Alzheimerâs disease in Down syndrome. Biochim. Biophys. Acta 1862, 909â914 (2016).
Acknowledgements
The authors are supported by the US National Institute on Aging grants U01AG051412 and P50AG16573 to I.T.L. and the US NIH grant R01HD064993 to E.H. The authors are grateful to N. Schupf and J. Lee at Columbia University, New York, NY, USA, for their helpful comments on this manuscript.
Reviewer information
Nature Reviews Neurology thanks A.C. Granholm, W. Mobley and other anonymous reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lott, I.T., Head, E. Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15, 135â147 (2019). https://doi.org/10.1038/s41582-018-0132-6
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41582-018-0132-6
This article is cited by
-
Cryo-EM structures reveal tau filaments from Down syndrome adopt Alzheimerâs disease fold
Acta Neuropathologica Communications (2024)
-
Cryo-EM structures of amyloid-β and tau filaments in Down syndrome
Nature Structural & Molecular Biology (2024)
-
High-resolution structures of amyloid-β and tau aggregates in individuals with Down syndrome
Nature Structural & Molecular Biology (2024)
-
Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimerâs-like transgenic rat model
Communications Biology (2024)
-
Transcranial photobiomodulation for neurodevelopmental disorders: a narrative review
Photochemical & Photobiological Sciences (2024)