Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated insulating states at fractional fillings of moiré superlattices

Abstract

Quantum particles on a lattice with competing long-range interactions are ubiquitous in physics; transition metal oxides1,2, layered molecular crystals3 and trapped-ion arrays4 are a few examples. In the strongly interacting regime, these systems often show a rich variety of quantum many-body ground states that challenge theory2. The emergence of transition metal dichalcogenide moiré superlattices provides a highly controllable platform in which to study long-range electronic correlations5,6,7,8,9,10,11,12. Here we report an observation of nearly two dozen correlated insulating states at fractional fillings of tungsten diselenide/tungsten disulfide moiré superlattices. This finding is enabled by a new optical sensing technique that is based on the sensitivity to the dielectric environment of the exciton excited states in a single-layer semiconductor of tungsten diselenide. The cascade of insulating states shows an energy ordering that is nearly symmetric about a filling factor of half a particle per superlattice site. We propose a series of charge-ordered states at commensurate filling fractions that range from generalized Wigner crystals7 to charge density waves. Our study lays the groundwork for using moiré superlattices to simulate a wealth of quantum many-body problems that are described by the two-dimensional extended Hubbard model3,13,14 or spin models with long-range charge–charge and exchange interactions15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical sensing of charge gaps using a van der Waals heterostructure platform.
Fig. 2: An abundance of insulating states and their energy ordering in a WSe2/WS2 moiré heterostructure.
Fig. 3: Temperature dependence of the correlated insulating states.

Similar content being viewed by others

Data availability

The data that support the plots within this paper, and other findings of this study, are available from the corresponding authors upon reasonable request.

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  CAS  Google Scholar 

  2. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS  CAS  PubMed  Google Scholar 

  3. Hotta, C. Theories on frustrated electrons in two-dimensional organic solids. Crystals 2, 1155–1200 (2012).

    CAS  Google Scholar 

  4. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  5. Zhu, Q., Tu, M. W. Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  6. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  CAS  PubMed  Google Scholar 

  7. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  CAS  PubMed  Google Scholar 

  8. Wu, F., Lovorn, T., Tutuc, E. & Macdonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    ADS  CAS  PubMed  Google Scholar 

  9. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    ADS  CAS  PubMed  Google Scholar 

  10. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    ADS  CAS  PubMed  Google Scholar 

  11. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS  PubMed  Google Scholar 

  12. Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. https://doi.org/10.1038/s41567-020-0958-x (2020).

  13. Pietig, R., Bulla, R. & Blawid, S. Reentrant charge order transition in the extended Hubbard model. Phys. Rev. Lett. 82, 4046–4049 (1999).

    ADS  CAS  Google Scholar 

  14. Tocchio, L. F., Gros, C., Zhang, X. F. & Eggert, S. Phase diagram of the triangular extended Hubbard model. Phys. Rev. Lett. 113, 246405 (2014).

    ADS  PubMed  Google Scholar 

  15. McKenzie, R. H., Merino, J., Marston, J. B. & Sushkov, O. P. Charge ordering and antiferromagnetic exchange in layered molecular crystals of the θ type. Phys. Rev. B 64, 085109 (2001).

    ADS  Google Scholar 

  16. Porras, D. & Cirac, J. I. Quantum manipulation of trapped ions in two dimensional coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006).

    ADS  CAS  PubMed  Google Scholar 

  17. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  CAS  PubMed  Google Scholar 

  18. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Google Scholar 

  19. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  CAS  PubMed  Google Scholar 

  21. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  CAS  PubMed  Google Scholar 

  22. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  CAS  PubMed  Google Scholar 

  23. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS  Google Scholar 

  24. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    CAS  PubMed  Google Scholar 

  25. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); correction 581, E3 (2020).

    ADS  CAS  PubMed  Google Scholar 

  26. Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18, 6175–6180 (2018).

    ADS  CAS  PubMed  Google Scholar 

  27. Wang, G. et al. Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  28. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS  Google Scholar 

  30. Gao, S., Liang, Y., Spataru, C. D. & Yang, L. Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett. 16, 5568–5573 (2016).

    ADS  CAS  PubMed  Google Scholar 

  31. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019); correction 569, E7 (2019).

    ADS  CAS  PubMed  Google Scholar 

  32. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  CAS  PubMed  Google Scholar 

  33. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019); correction 572, E8 (2019).

    ADS  CAS  PubMed  Google Scholar 

  34. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  CAS  PubMed  Google Scholar 

  35. Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Preprint at https://arxiv.org/abs/1910.14061 (2019).

  36. Slagle, K. & Fu, L. Charge transfer excitations, pair density waves, and superconductivity in moiré materials. Preprint at https://arxiv.org/abs/2003.13690 (2020).

  37. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    ADS  PubMed  Google Scholar 

  38. Nandkishore, R., Chern, G. W. & Chubukov, A. V. Itinerant half-metal spin-density-wave state on the hexagonal lattice. Phys. Rev. Lett. 108, 227204 (2012).

    ADS  PubMed  Google Scholar 

  39. Nandkishore, R., Thomale, R. & Chubukov, A. V. Superconductivity from weak repulsion in hexagonal lattice systems. Phys. Rev. B 89, 144501 (2014).

    ADS  Google Scholar 

  40. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  CAS  PubMed  Google Scholar 

  41. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    ADS  PubMed  Google Scholar 

  42. Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

    ADS  CAS  PubMed  Google Scholar 

  43. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    ADS  PubMed  Google Scholar 

  44. Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    ADS  Google Scholar 

  45. Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Fu for fruitful discussions. Research was primarily supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award number DE-SC0019481 (optical spectroscopy and growth of WSe2 crystals). Device fabrication was supported by US Office of Naval Research under award number N00014-18-1-2368. The growth of the hBN crystals was supported by the Elemental Strategy Initiative of MEXT, Japan and CREST (JPMJCR15F3), JST. K.F.M. also acknowledges support from David and Lucille Packard Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. fabricated the devices, performed the measurements and analysed the data. V.E. performed theoretical calculations. S.L., D.A.R. and J.H. grew the bulk WSe2 crystals, and K.W. and T.T. grew the bulk hBN crystals. Y.X., K.F.M. and J.S. designed the scientific objectives and oversaw the project. Y.X., V.E., K.F.M. and J.S. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yang Xu, Veit Elser, Kin Fai Mak or Jie Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Xiaobo Lu, Fengcheng Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional doping-dependence data and analysis for the control device.

a, Gate-dependent reflection contrast (ΔR/R0) spectrum near the WSe2 (sensor) 2s transition energy (same data as in Fig. 1d, middle). The WS2 sample is electron-doped above Vg = 1.5 V (white dashed line). b, Representative linecuts of a. Curves are shifted vertically for clarity. The red and blue dashed curves highlight the redshifted and blueshifted branches, respectively. c, Spectral weight of the two branches as a function of Vg (calculated after removing the background taken at 1 V and 4 V for the redshifted and blueshifted branches, respectively). The blueshifted branch has been multiplied by a factor of 0.3. The redshifted feature emerges while the blueshifted feature quickly goes to zero at Vg ≈ 1.5 V.

Extended Data Fig. 2 Assignment of the filling factor of the insulating states.

For each insulating state, the position (filled squares) and the FWHM (horizontal bars) in gate voltage are determined through a Lorentzian fit of the 2s exciton resonance energy as a function of gate voltage. The red lines are linear fits using four established states v = 2, v = 1, v = 2/3 and v = 1/3 on the electron and hole sides independently. Both slopes correspond to 0.25 filling per volt. The filling factor of the other states is assigned using the slope as described in Methods.

Extended Data Fig. 3 Results from different regions of the device.

a–e, Gate-dependent reflection contrast spectrum measured at different regions of the device P1 (a), P2 (b), P3 (c), P4 (d) and P5 (e) at 1.6 K. All share the same x axis, given at the bottom. The correlated states that can be identified are labelled on the top axes.

Extended Data Fig. 4 Results from a different device.

a, Gate-dependent reflection contrast spectrum of a different sample as descried in the Methods at 1.6 K. The filling factor is shown on the right axis. A fixed back gate voltage of 8 V is applied to dope the contact region to form good electrical contact between the TMD moiré superlattice and the contact electrode. The top gate voltage Vg is swept to tune the electron doping density. Below Vg = −9 V (dashed white line), the sample is charge neutral. b, As in a, focusing on the 2s transition in the sensor. The identified insulating states are marked with their corresponding filling factors.

Extended Data Fig. 5 Analysis of the −1/3 and −2/3 states.

a, b, Two horizontal line cuts of Fig. 2a at 1.8403 eV (a) and 1.8383 eV (b). These energies correspond to the 2s exciton peak energy for the v = −1/3 and v = −2/3 states, respectively. They appear as peaks in −ΔR/R0. Results at different temperatures (in ascending order from bottom to top, 1.6 K, 4 K, 6 K, 10 K, 13 K, 15 K, 17 K, 19 K, 22 K, 26 K, 29 K, 32 K, 35 K, 38 K, 40 K and 50 K) are vertically displaced for clarity. The red curves are Lorentzian fits to the peaks for the corresponding states. c, Reflection contrast spectrum (−ΔR/R0) for Vg = − 3.3 V (v = −2/3) at 1.6 K. The red area underneath the 2s peak is integrated to obtain the 2s spectral weight. d, The 2s spectral weight as a function of temperature for state v = −1/3 (black symbols) and v = −2/3 (red symbols). The v = −1/3 state has a slightly higher TC than the v = −2/3 state. The lines are guides to the eye.

Extended Data Fig. 6 First derivative of data shown in Fig. 2a with respect to energy.

This is used to evaluate the gate voltage and width of the less well-developed insulating states such as those with |v| > 1. The black arrows highlight the enhanced features for the 1/7 and 6/7 states.

Extended Data Fig. 7 Optical response of the WSe2/WS2 moiré superlattice.

a, b, Gate-dependent reflection contrast spectrum in regions of the device without (a) and with (b) the WSe2 sensor at 1.6 K. The Fermi level is inside the WSe2/WS2 bandgap between the dashed lines.

Extended Data Fig. 8 Contour plots of additional gate-dependent reflection contrast spectrum at higher temperatures.

From top to bottom, T = 67 K, 80 K and 150 K. All share the same x axis, given at bottom.

Extended Data Fig. 9 Transition temperature to the charge-ordered state (simulation).

Transition temperatures are determined from the peak in the temperature dependence of the heat capacity Cp for fillings 1/7, 1/4, 1/3, 2/5 and 1/2. Temperature is given in units of the energy e2/(4πεε0a) and d/a is fixed to be 10.

Extended Data Table 1 Comparison between model and experiment for the transition temperature of the charge-ordered states at fillings ν = 1/7, 1/4, 1/3, 2/5 and 1/2

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, S., Rhodes, D.A. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020). https://doi.org/10.1038/s41586-020-2868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2868-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing