Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2

Abstract

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light–matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of cavity control of quantum material states and THz characterization of 1T-TaS2 metal-to-insulator transition.
Fig. 2: Renormalization of the effective critical temperature of the metal-to-insulator phase transition within the cavity.
Fig. 3: Dependence of the effective critical temperature on the cavity geometry.
Fig. 4: Cavity-mediated thermodynamics of the metal-to-insulator phase transition in 1T-TaS2.

Similar content being viewed by others

Data availability

Raw hysteretic curves as a function of the cavity frequency (Fig. 4a) as well as the raw single THz scans of Figs. 3b and 4c are provided in the Supplementary Information. Further datasets collected for this study are available from the corresponding author upon reasonable request.

References

  1. Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).

    Article  ADS  CAS  Google Scholar 

  3. Jarc, G. et al. Tunable cryogenic terahertz cavity for strong light–matter coupling in complex materials. Rev. Sci. Instrum. 93, 033102 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Giusti, F. et al. Signatures of enhanced superconducting phase coherence in optimally doped Bi2Sr2Y0.08Ca0.92Cu2O8+δ driven by midinfrared pulse excitations. Phys. Rev. Lett. 122, 067002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Montanaro, A. et al. Anomalous non-equilibrium response in black phosphorus to sub-gap mid-infrared excitation. Nat. Commun. 13, 2667 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron-photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Allocca, A. A., Raines, Z. M., Curtis, J. B. & Galitski, V. M. Cavity superconductor-polaritons. Phys. Rev. B 99, 020504(R) (2019).

    Article  ADS  Google Scholar 

  13. Laplace, Y., Fernandez-Pena, S., Gariglio, S., Triscone, J. M. & Cavalleri, A. Proposed cavity Josephson plasmonics with complex-oxide heterostructures. Phys. Rev. B 93, 075152 (2016).

    Article  ADS  Google Scholar 

  14. Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, J. & Eckstein, M. Manipulating intertwined orders in solids with quantum light. Phys. Rev. Lett. 125, 217402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019). 2019.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

    CAS  Google Scholar 

  19. Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lenk, K., Li, J., Werner, P. & Eckstein, M. Dynamical mean-field study of a photon-mediated ferroelectric phase transition. Phys. Rev. B 106, 245124 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Soykal, Ö. O. & Flatté, E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).

    Article  CAS  Google Scholar 

  23. Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  24. Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaidyanathan, A. G., Spencer, W. P. & Kleppner, D. Inhibited absorption of blackbody radiation. Phys. Rev. Lett. 47, 1592 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Jones, A. C., O’Callahan, B. T., Yang, H. U. & Raschke, M. B. The thermal near-field: coherence, spectroscopy, heat transfer, and optical forces. Prog. Surf. Sci. 88, 349–392 (2013).

    Article  ADS  CAS  Google Scholar 

  27. Roberts, A. S., Chirumamilla, M., Thilsing-Hansen, K., Pedersen, K. & Bozhevolnyi, S. I. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators. Opt. Express 23, A1111–A1119 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).

    Article  ADS  Google Scholar 

  29. Shiue, R.-J. et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun. 10, 109 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2. Sci. Adv. 1, e1500168 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-polytype. J. Phys. Soc. Jpn 43, 1839–1847 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and collective modes. J. Phys. Soc. Jpn 45, 1147–1156 (1978).

    Article  ADS  CAS  Google Scholar 

  35. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  ADS  CAS  Google Scholar 

  36. Burk, B., Thomson, R. E., Clarke, J. & Zettl, A. Surface and bulk charge density wave structure in 1 T-TaS2. Science 257, 362–364 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).

    Article  ADS  CAS  Google Scholar 

  38. Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl Acad. Sci. USA 112, 15054–15059 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, W., Dietzel, D. & Schirmeisen, A. Lattice discontinuities of 1T-TaS2 across first order charge density wave phase transitions. Sci. Rep. 9, 7066 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Gasparov, L. V. et al. Phonon anomaly at the charge ordering transition in 1T-TaS2. Phys. Rev. B 66, 094301 (2002).

    Article  ADS  Google Scholar 

  41. Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS2. Phys. Rev. Lett. 106, 016401 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975).

    Article  ADS  CAS  Google Scholar 

  43. Baek, S., Sur, Y., Kim, K. H., Vojta, M. & Büchner, B. Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe2 elucidated by NMR. New J. Phys. 24, 043008 (2022).

    Article  ADS  Google Scholar 

  44. Svetin, D. et al. Transitions between photoinduced macroscopic quantum states in 1T-TaS2 controlled by substrate strain. Appl. Phys. Express 7, 103201 (2014).

    Article  ADS  Google Scholar 

  45. Ma, Y., Hou, Y., Lu, C., Li, L. & Petrovic, C. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS2. Phys. Rev. B 97, 195117 (2018).

    Article  ADS  CAS  Google Scholar 

  46. Ma, Y., Wu, D. & Wang, Z. The evidence of stacking disorder from dielectric response along the c-axis in the commensurate CDW phase in bulk 1T-TaS2. Solid State Commun. 316–317, 113946 (2020).

    Article  Google Scholar 

  47. Pilar, P., De Bernardis, D. & Rabl, P. Thermodynamics of ultrastrongly coupled light–matter systems. Quantum 4, 335 (2020).

    Article  Google Scholar 

  48. Picardi, M. F., Nimje, K. N. & Papadakis, G. T. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).

    Article  ADS  CAS  Google Scholar 

  49. Purcell, E. M., Pound, R. V. & Bloembergen, N. Nuclear magnetic resonance absorption in hydrogen gas. Phys. Rev. 70, 986 (1946).

    Article  ADS  Google Scholar 

  50. Guy, D. R. P., Ghorayeb, A. M., Bayliss, S. C. & Friend, R. H. in Charge Density Waves in Solids Lecture Notes in Physics Vol. 217 (eds Hutiray, G. & Sólyom, J.) 80–83 (Springer, 1985).

  51. Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).

    Article  ADS  CAS  Google Scholar 

  52. Russell, R. W., Chatelain, M. A., Hecht, J. H. & Stephens, J. R. Si3N4 emissivity and the unidentified infrared bands. In IAU Symposium, Interstellar Dust: Contributed Papers Vol. 135 (eds Allamandola, L. J. & Tielens, A. G. G. M.) 157–162 (1989).

Download references

Acknowledgements

We thank C. Tozzo, P. van Loosdrecht, H. Hedayat and O. Abdul-Aziz for the discussions. We acknowledge P. Sutar (Jožef Stefan Institute, Ljubljana) for the growth of 1T-TaS2 crystals and discussions with J. Faist. This work was supported by the European Research Council through the project INCEPT (ERC-2015-STG, grant no. 677488). F.F. acknowledges financial support from the H2020 Marie Skłodowska-Curie actions of the European Union (grant agreement no. 799408). D.M. and P. Sutar acknowledge funding from the ARRS (grant no. P-0040). M.E. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project ID 429529648—TRR 306 QuCoLiMa (Quantum Cooperativity of Light and Matter).

Author information

Authors and Affiliations

Authors

Contributions

G.J., S.Y.M. and A.M. performed the experiments with support from F.G. and E.M.R. G.J. analysed the data with support from S.Y.M. M.E., D.F. and F.F. conceived and developed the theoretical models with support of D.M. and P.P. G.J. performed the finite-element simulations of incoherent thermal heating. R.S. developed the micrometric thermocouple junction for the temperature measurements within the cavity. S.D.Z. fabricated the silicon nitride membranes and the semi-reflecting cavity mirrors. D.M. provided the 1T-TaS2 samples. S.W. provided the THz emitters and guided the THz set-up. G.J., D.F., A.M., M.E. and F.F. wrote the paper with contributions from all the other authors. D.F. conceived and managed the project.

Corresponding author

Correspondence to Daniele Fausti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Edoardo Baldini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental set-up.

a. Sketch of the THz time domain spectrometer. In the inset, the photograph of the tunable cryogenic cavity composed of two cryo-cooled moving mirrors within which the sample is embedded. b. Free-space nearly single-cycle THz field employed in the experiments detected trough Electro-Optical Sampling (EOS) in a 0.5 mm ZnTe crystal. c. Fourier transform of the nearly single-cycle THz field in free space. In the inset, the Fourier spectrum is plotted in logarithmic scale to highlight the spectral content of the THz field up to ∼ 6 THz. The black dashed line in the logarithmic plot indicates the noise level.

Extended Data Fig. 2 THz characterization of the empty cavity.

a. Time domain THz fields measured at the output of the empty cavity for three representative cavity frequencies \({\omega }_{c}\) indicated in legend. b. Cavity transmission spectra calculated from the fields shown in a. proving the tunability of the cavity fundamental mode.

Extended Data Fig. 3 Dependence of the observed metal-to-insulator phase transition on the waiting time.

The temperature evolution of the low frequency transmission (0.2 THz < ω < 1.5 THz) is plotted for different waiting times before starting the THz acquisition.

Extended Data Fig. 4 Determination procedure of the effective critical temperature of the metal-to-insulator transition.

a. In the top panel the temperature evolution of the integrated low frequency transmission (0.2 THz < ω < 1.5 THz integration range) upon heating and cooling (circled markers). The solid line is the result of an interpolation. In the lower panel the derivative of the interpolated curve whose maximum sets the effective critical temperature of the phase transition. b. In the top panel the temperature evolution of the integrated 1.58 THz phonon transmission (1.53 THz < ω < 1.62 THz integration range) and its interpolation. In the lower panel the derivative of the interpolated phonon response across the phase transition.

Extended Data Fig. 5 Cavity-induced renormalization of the free energy of the metallic phase.

a. Free energy model setting. Upper panels: coplanar cavity with a thin slab of matter (thickness d) inside a cavity of length \(L\). Lower panels: Sketch of the cavity modes dispersion and of the absorption solid band (green shaded region centered at \({\omega }_{{diss}}\)). As \(L\) is increased, modes are pulled inside and below the absorption band of the solid. The cavity fundamental mode is indicated with \({\omega }_{c}(L).\) b. Dielectric loss spectrum \(\alpha {\prime\prime} (\omega \)) (\(\Omega \) = 15 GHz, \(\gamma \) = 20 GHz) employed for the calculations. The spectrum has been normalized by the static contribution to the polarizability \(\alpha (0)\). c. Renormalization of the metallic free energy \(\varDelta {F}_{m}\) as a function of the cavity frequency for different temperatures. The cavity frequencies \({\omega }_{c}\) are normalized by \(\Omega \) = 15 GHz. d. Renormalization of the metallic free energy \(\varDelta {F}_{m}\) as a function of the temperature for different cavity frequencies above and below resonance \({\omega }_{c}=\Omega \).

Extended Data Fig. 6 Cavity control of sample dissipations.

a. Schematic representation of the thermal loads on the sample determined by its coupling with the cold finger through the cavity-independent factor \({K}_{\mathrm{ext}-\mathrm{int}}\) and with the photon thermal bath through the cavity-dependent factor \({K}_{\mathrm{ph}-\mathrm{int}}({\omega }_{c},Q)\). b. Density of states of the solid (peaked at the mode frequency \(\Omega \)) and of the cavity (peaked at multiples of the fundamental mode \({\omega }_{c}\)). The cavity density of states is multiplied by the Boltzmann distribution at the temperature of the photon bath \({{\rm{T}}}_{{\rm{ph}}}\) = 300 K. c. Dependence of the temperature ratio \({{T}_{\mathrm{int}}\left({\omega }_{c},Q\right)/T}_{\mathrm{ext}}\) as a function of the cavity frequency for different temperatures of the cold finger \({{\rm{T}}}_{{\rm{ext}}}\). The absolute temperature renormalization scales with \({K}_{\mathrm{ph}-\mathrm{int}}({\omega }_{c},Q)\). d. Evolution of the temperature ratio \({{T}_{\mathrm{int}}\left({\omega }_{c},Q\right)/T}_{\mathrm{ext}}\) upon tuning the cavity frequency for different values of the cavity-independent coupling constant \({K}_{\mathrm{ext}-\mathrm{int}}\) at a fixed cold finger temperature \({{\rm{T}}}_{{\rm{ext}}}\) = 80 K. The values of the cavity-independent constant \({K}_{\mathrm{ext}-\mathrm{int}}\) indicated in the legend have been normalized by \({K}_{\mathrm{ph}-\mathrm{int}}({\omega }_{c},Q)\) evaluated at \({\omega }_{c}=\Omega \).

Extended Data Fig. 7 Temperature measurements set-up.

Photograph of the micrometric Cr-Al junction sealed within the membranes and in thermal contact with the sample.

Extended Data Fig. 8 Finite elements simulation of the membrane’s thermal dissipations in free space.

a. Simulated 2D temperature profile of the membrane in free space. b. Radial dependence of the membrane’s temperature held in free space. The cold finger temperature has been set at \({{\rm{T}}}_{{\rm{ext}}}\) = 180 K.

Extended Data Fig. 9 Finite elements simulation of membrane’s temperature as a function of the mirror mounts position.

a. 3D thermal profile of the membrane for two representative distances between the mirror mounts (13 mm and 1.0 mm). b. Cut of membrane’s thermal profile along the radial direction for the two mounts distances presented in a. The cold finger temperature has been set at \({{\rm{T}}}_{{\rm{ext}}}\) = 180 K, as well as the mounts temperature.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–23.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarc, G., Mathengattil, S.Y., Montanaro, A. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023). https://doi.org/10.1038/s41586-023-06596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06596-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing