Abstract
Vegetation fires are an essential component of the Earth system but can also cause substantial economic losses, severe air pollution, human mortality and environmental damage. Contemporary fire regimes are increasingly impacted by human activities and climate change, but, owing to the complex fireâhumanâclimate interactions and incomplete historical or long-term datasets, it is difficult to detect and project fire-regime trajectories. In this Review, we describe recent global and regional trends in fire activity and examine projections for fire regimes in the near future. Although there are large uncertainties, it is likely that the economic and environmental impacts of vegetation fires will worsen as a result of anthropogenic climate change. These effects will be particularly prominent in flammable forests in populated temperate zones, the sparsely inhabited flammable boreal zone and fire-sensitive tropical rainforests, and will contribute to greenhouse gas emissions. The impacts of increased fire activity can be mitigated through effective stewardship of fire regimes, which should be achieved through evidence-based fire management that incorporates indigenous and local knowledge, combined with planning and design of natural and urban landscapes. Increasing transdisciplinary research is needed to fully understand how Anthropocene fire regimes are changing and how humans must adapt.
Key points
-
Vegetation fires are an ancient and essential component of the Earth system, and have shaped the evolution of plants, animals and biogeochemical processes. There are discernible global geographic and temporal patterns of fire activity reflecting the interplay of climate, vegetation and ignitions.
-
Anthropogenic influences on fire activity have become more pronounced since the late eighteenth century, reflecting the effects of industrialization and climate change, land clearance, human population growth, replacement of indigenous and traditional fire management, and the subsequent development of large-scale firefighting and fuels management in the twentieth century.
-
The human settlement and infrastructure embedded in flammable vegetation contributes to economically disastrous fires.
-
Large and frequent fires in boreal and tropical forests have the potential to cause terrestrial carbon stores to become major greenhouse gas sources, amplifying climate change.
-
Detecting and predicting changes in fire activity is difficult due to relatively brief fire records, bioregional variability and human involvement. To understand how Anthropocene fire regimes are changing, and how humans must adapt, researchers from biological sciences, physical sciences and humanities and fire-management practitioners must work together.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J. & Alexander, M. E. Fire on Earth: An Introduction (Wiley, 2013).
Ward, D. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857â10886 (2012).
Bowman, D. M. et al. Fire in the Earth system. Science 324, 481â484 (2009).
Carslaw, K. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701â1737 (2010).
Peterson, D. A. et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 1, 30 (2018).
McRae, R. H., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417â428 (2015).
Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105â3108 (1999).
Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965â7974 (2017).
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964â971 (2018).
Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53â69 (2010).
Keeley, J. E. & Fotheringham, C. Role of fire in regeneration from seed. Seeds 2, 311â330 (2000).
Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5â21 (1980).
Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265â272 (2015).
Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89â92 (2013).
Huffman, M. R. The many elements of traditional fire knowledge: synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).
Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908â1918 (2015).
Scherjon, F. et al. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56, 314â315 (2015).
Mertz, O. et al. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37, 259â264 (2009).
Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223â2236 (2011).
Calkin, D. E., Stonesifer, C. S., Thompson, M. P. & McHugh, C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 23, 259â271 (2014).
Le Page, Y., Oom, D., Silva, J. M., Jönsson, P. & Pereira, J. M. Seasonality of vegetation fires as modified by human action: observing the deviation from ecoâclimatic fire regimes. Glob. Ecol. Biogeogr. 19, 575â588 (2010).
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climateâfire relationships. Glob. Change Biol. 24, 5164â5175 (2018).
Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).
Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85â99 (2016).
Tedim, F. et al. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
Ladds, M., Keating, A., Handmer, J. & Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 21, 419â429 (2017).
Kramer, H. A., Mockrin, M. H., Alexandre, P. M. & Radeloff, V. C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 28, 641â650 (2019).
Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires. NIST Special Publication 1215 (NIST, 2017).
Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008â2012. Sci. Total Environ. 610, 802â809 (2018).
Read, P. & Denniss, R. With costs approaching $100 billion, the fires are Australiaâs costliest natural disaster. The Conversation https://theconversation.com/with-costs-approaching-100-billion-the-fires-are-australias-costliest-natural-disaster-129433 (2020).
Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci.USA 115, 8252â8259 (2018).
Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54â63 (2020).
Bowman, D. M., OâBrien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 38, 57â80 (2013).
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72â85 (2018).
Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442â6447 (2013).
Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690â696 (2019).
Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Global Change 12, 33â53 (2007).
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles 22 (2008).
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102 (2009).
Pausas, J. G. & Ribeiro, E. The global fireâproductivity relationship. Global Ecol. Biogeogr. 22, 728â736 (2013).
McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 27, 26â36 (2017).
Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. Biogeogr. 23, 821â824 (2014).
Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259â268 (2001).
Cochrane, M. A. Fire science for rainforests. Nature 421, 913â919 (2003).
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1â16 (2005).
Abatzoglou, J. T. & Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 64, 471â478 (2011).
Balch, J. K., Bradley, B. A., DâAntonio, C. M. & GómezâDans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980â2009). Glob. Change Biol. 19, 173â183 (2013).
Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955â966 (2001).
Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697â720 (2017).
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520â523 (2019).
Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. B Biol. Sci. 359, 331â343 (2004).
Kurz, W. et al. Quantifying the impacts of human activities on reported greenhouse gas emissions and removals in Canadaâs managed forest: conceptual framework and implementation. Can. J. For. Res. 48, 1227â1240 (2018).
Doerr, S. H. & SantÃn, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).
Bowman, D. Wildfire science is at a loss for comprehensive data. Nature 560, 7â8 (2018).
Foreman, P. W. A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic southâeastern Australia. Australian J. Botany 64, 626â642 (2016).
Van Wagner, C. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8, 220â227 (1978).
Larsen, C. P. S. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. Holocene 6, 449â456 (1996).
Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. & Lefort, P. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33, 356â360 (2004).
Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535âE543 (2012).
Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697â702 (2008).
Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45â64 (2019).
Forkel, M. et al. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 1, 051005 (2019).
Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002 (2008).
Clode, D. & Elgar, M. A. Fighting fire with fire: does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 27, 1192â1199 (2014).
Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116â126 (2009).
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Justice, C. et al. The MODIS fire products. Remote Sens. Environ. 83, 244â262 (2002).
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356â1362 (2017).
Burrows, N., Ward, B. & Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Queensland 115, 69â76 (2009).
Bird, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australiaâs spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287â10292 (2012).
Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fireâclimate interactions in the Sierra Nevada, USA, 1600â2015 CE. Proc. Natl Acad. Sci. USA 113, 13684â13689 (2016).
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940â943 (2006).
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770â11775 (2016).
Balch, J. K. et al. Switching on the Big Burn of 2017. Fire 1, 17 (2018).
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892â910 (2019).
Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).
Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578â600 (2009).
Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009â1020 (2018).
Flannigan, M. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59â71 (2016).
Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256â269 (2018).
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529â534 (2017).
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11â14 (2015).
OâConnor, F. M. et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys. 48, RG4005 (2010).
Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207â223 (2004).
Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The âfire stick farmingâ hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796â14801 (2008).
Cruz, M. et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 284, 269â285 (2012).
Ndalila, M. N., Williamson, G. J. & Bowman, D. M. Geographic patterns of fire severity following an extreme Eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 1, 40 (2018).
Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517â8526 (2019).
Styger, J., Marsden-Smedley, J. & Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980â2016. Fire 1, 38 (2018).
Bowman, D. M., Bliss, A., Bowman, C. J. & Prior, L. D. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecol. 44, 1322â1339 (2019).
Boer, M. M., de Dios, V. R. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171â172 (2020).
van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1â46 (2020).
Bowman, D. M. et al. Humanâenvironmental drivers and impacts of the globally extreme 2017 Chilean fires. AMBIO 48, 350â362 (2019).
Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104â107 (2018).
Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594â23599 (2019).
Setterfield, S. A., RossiterâRachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Biodiversity research: turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854â861 (2010).
Van Marle, M. J. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750â2015). Geosci. Model Dev. 10, 3329â3357 (2017).
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141â2194 (2018).
Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980â2000). Biogeosciences 9, 317â340 (2012).
Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906â911 (2017).
Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge Univ. Press, 2013).
Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54â61 (2013).
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326â336 (2019).
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851â854 (2014).
Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781â785 (2016).
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58â69 (2017).
Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1â22 (2012).
Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187â192 (1993).
Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).
Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24, 892â899 (2015).
Westerling, A. L., Turner, M. G., Smithwick, E. A., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165â13170 (2011).
Buotte, P. C. et al. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290â303 (2019).
Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).
Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).
Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).
Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118â1129 (2013).
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952â958 (2019).
Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. Climateâvegetationâfire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev. Clim. Change 7, 910â931 (2016).
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359â3375 (2016).
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167â19170 (2010).
Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549â560 (2009).
Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Model. 221, 1301â1309 (2010).
Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883â3910 (2019).
Nepstad, D. C., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737â1746 (2008).
Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019â10024 (2016).
Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601â612 (2012).
Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).
Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65â75 (2016).
Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243â252 (2018).
Wilkin, K., Ackerly, D. & Stephens, S. Climate change refugia, fire ecology and management. Forests 7, 77 (2016).
Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G. & Ryan, M. G. Carbon storage on landscapes with stand-replacing fires. Bioscience 56, 598â606 (2006).
Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl Acad. Sci. USA 115, 12419â12424 (2018).
Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986â5993 (2017).
Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001â1002 (2018).
Cannon, S. H. & DeGraff, J. in LandslidesâDisaster Risk Reduction (eds Sassa, K. & Canuti, P.) 177â190 (Springer, 2009).
Garfin, G. et al. Managing for Future Risks of Fire, Extreme Precipitation, and Post-fire Flooding. Report to the U.S. Bureau of Reclamation, from the Project Enhancing Water Supply Reliability (Institute of the Environment, 2016).
Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 515, 175â177 (2020).
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177â179 (2020).
Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58â66 (2014).
Kolden, C. A. Weâre not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2, 30 (2019).
Fernandes, P. M. & Botelho, H. S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 12, 117â128 (2003).
Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in southâeastern Australia. J. Biogeogr. 42, 2234â2245 (2015).
Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493â498 (2008).
Stephens, S. L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 105, 21â35 (1998).
Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuelâreduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83â90 (2012).
Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513â527 (2019).
Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146â157 (2012).
Williamson, G., Bowman, D. M. S., Price, O. F., Henderson, S. & Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11, 125009 (2016).
Broome, R. A., Johnston, F. H., Horsley, J. & Morgan, G. G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 205, 407â408 (2016).
U.S. Environmental Protection Agency, Office of Air and Radiation. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report â Rev. A (U.S. Environmental Protection Agency, Office of Air and Radiation, 2011).
Bowman, D. et al. Can air quality management drive sustainable fuels management at the temperate wildlandâurban interface? Fire 1, 27 (2018).
Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274â1275 (2016).
Reyes-GarcÃa, V. & Benyei, P. Indigenous knowledge for conservation. Nat. Sustain. 2, 657â658 (2019).
Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B Biol. Sci. 280, 20132297 (2013).
Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567â569 (2009).
Bowman, D. M. & Legge, S. Pyrodiversity â why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848â853 (2016).
Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582â4590 (2017).
Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543â565 (2018).
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946â2951 (2017).
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276â284 (2016).
Borchers Arriagada, N. et al. Unprecedented smokeârelated health burden associated with the 2019â20 bushfires in eastern Australia. Med. J. Aust. https://doi.org/10.5694/mja2.50545 (2020).
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276â284 (2016).
Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130â146 (2016).
McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797â804 (2019).
Curran, T., Perry, G., Wyse, S. & Alam, M. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 1, 3 (2018).
Bowman, D. M. J. S. & Stoof, C. Diversity helps fight wildfires. Nature 571, 478 (2019).
Cui, X. et al. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 233, 329â336 (2019).
Kolden, C. A. & Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: a case study from the 2017 Thomas fire. Fire 2, 9 (2019).
Eriksen, C. Gender and Wildfire: Landscapes of Uncertainty (Routledge, 2013).
Huffman, M. R. Making a world of difference in fire and climate change. Fire Ecol. 10, 90â101 (2014).
Pratt, M. et al. The implications of megatrends in information and communication technology and transportation for changes in global physical activity. Lancet 380, 282â293 (2012).
Johnston, F. et al. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 13, 044019 (2018).
Lovreglio, R., Kuligowski, E., Gwynne, S. & Strahan, K. A modelling framework for householder decision-making for wildfire emergencies. Int. J. Disaster Risk Reduct. 41, 101274 (2019).
Kulemeka, O. A review of wildland fire smartphone applications: a classification study from Australia, USA, Canada and South Africa. Int. J. Emerg. Serv. 4, 258â270 (2015).
Rappold, A. et al. Smoke Sense initiative leverages citizen science to address the growing wildfireârelated public health problem. GeoHealth 3, 443â457 (2019).
Maryam, H., Shah, M. A., Javaid, Q. & Kamran, M. A survey on smartphones systems for emergency management (SPSEM). Int. J. Adv. Comput. Sci. Appl. 7, 301â311 (2016).
Vardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C. & Johnston, F. H. Bushfire smoke: urgent need for a national health protection strategy. Med. J. Aust. 212, 349â353.e1 (2020).
Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).
Russell-Smith, J. et al. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 10, e0143426 (2015).
Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55âe63 (2013).
Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658â667 (2012).
Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grassâfire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185â4194 (2014).
Murphy, B. P., RussellâSmith, J. & Prior, L. D. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Glob. Change Biol. 16, 331â343 (2010).
Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management âworkâ in northern Australia. J. Ethnobiol. 35, 140â163 (2015).
de Oliveira Andrade, R. Alarming surge in Amazon fires prompts global outcry. Nature https://doi.org/10.1038/d41586-019-02537-0 (23 Aug 2019).
Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437â451 (1995).
Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24â30 (2015).
Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. https://doi.org/10.1111/gcb.15158 (2020).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76â79 (2019).
Bastin, J.-F. et al. Response to comments on âThe global tree restoration potentialâ. Science 366, eaay8108 (2019).
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25â28 (2019).
Veldman, J. W. et al. Comment on âThe global tree restoration potentialâ. Science 366, eaay7976 (2019).
Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on âThe global tree restoration potentialâ. Science 366, eaay8060 (2019).
Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on âThe global tree restoration potentialâ. Science 366, eaaz0388 (2019).
Grainger, A., Iverson, L. R., Marland, G. H. & Prasad, A. Comment on âThe global tree restoration potentialâ. Science 366, eaay8334 (2019).
Luedeling, E. et al. Forest restoration: Overlooked constraints. Science 366, 315 (2019).
Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887â15891 (2011).
Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Nerini, F. F. et al. Connecting climate action with other sustainable development goals. Nat. Sustain. 2, 674â680 (2019).
Castree, N. Speaking for the âpeople disciplinesâ: Global change science and its human dimensions. Anthropocene Rev. 4, 160â182 (2017).
Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985â3994 (2019).
Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529â552 (2019).
Meng, R. et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 191, 95â109 (2017).
Filkov, A., Duff, T. & Penman, T. Improving fire behaviour data obtained from wildfires. Forests 9, 81 (2018).
White, I. et al. The vulnerability of water supply catchments to bushfires: impacts of the January 2003 wildfires on the Australian capital territory. Australas. J. Water Resour. 10, 179â194 (2006).
Kliskey, A. et al. Planning for Idahoâs waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 94, 191â201 (2019).
Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970â2013. Forestry Chron. 92, 298â306 (2016).
Burton, C., Betts, R., Jones, C. & Williams, K. Will fire danger be reduced by using solar radiation management to limit global warming to 1.5 C compared to 2.0 C? Geophys. Res. Lett. 45, 3644â3652 (2018).
Bedia, J. et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214, 369â379 (2015).
Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 259, 685â697 (2010).
Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86â92 (2015).
de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 294, 35â44 (2013).
Fonseca, M. G. et al. Effects of climate and landâuse change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 25, 2931â2946 (2019).
Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237â1246 (2017).
Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).
Fox-Hughes, P., Harris, R., Lee, G., Grose, M. & Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309â321 (2014).
Syphard, A. D. et al. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change 56, 41â55 (2019).
Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5âS9 (2015).
Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).
Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern highâlatitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606â617 (2017).
Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief https://sciencebrief.org/briefs/wildfires (2020).
Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980â2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).
DiMiceli, C. et al. MOD44B v006. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid (NASA EOSDIS Land Processes DAAC, 2015).
Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916â2003. Ecol. Appl. 19, 1003â1021 (2009).
Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3â21 (2007).
Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).
Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscapeâwide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008â1015 (2014).
Acknowledgements
The authors thank Grant Williamson, University of Tasmania, for assistance with the Tasmanian area burned data and Rick McRae, ACT Emergency Services Agency, for the NSW pyrocumulonimbus data.
Author information
Authors and Affiliations
Contributions
D.M.J.S.B. coordinated the project, led the writing and contributed to the design of the graphics. C.A.K. led the design of the graphics and contributed to the writing. J.T.A. led the climate analyses and contributed to the graphic design and writing. F.H.J. contributed to the project development, graphic design and writing. G.R.v.d.W. led the analysis of carbon emissions and contributed to the graphic design and writing. M.F. contributed to the project development, graphic design and writing.
Corresponding author
Ethics declarations
Competing interest
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Canadian National Fire Database: https://cwfis.cfs.nrcan.gc.ca/ha/nfdb
Global Fire Atlas: https://www.globalfiredata.org/fireatlas.html
Global Fire Emissions Database: https://www.globalfiredata.org
MODIS Burned Area Product: https://modis.gsfc.nasa.gov/data/dataprod/mod45.php
NatCatSERVICE: https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
National Interagency Fire Center: https://www.nifc.gov/index.html
Glossary
- Biomass
-
Non-fossilized organic matter, including living and dead phytomass, organic soils, and animal remains and excrement.
- Pyrocumulonimbus
-
Intense convective thunderstorms that develop above highly energetic wildfires, which can reach the stratosphere and create localized weather, including rain, hail, lightning and pyro-tornadoes.
- Fire regimes
-
Characteristic syndrome of landscape fire with respect to behaviour, frequency, seasonality, geographic scale and pattern, with predictable biological responses and environmental effects.
- Regenerate
-
The process of plant recovery following fire damage, either from seeds stored in the soil or vegetatively from specialized tissues located in roots, stems and branches.
- Ignitions
-
Sufficient energy to initiate combustion of plant biomass, and can be natural, such as from lightning, or directly set by humans either deliberately, accidentally or indirectly.
- Extreme vegetation-fire events
-
Extreme fire events are characterized by some combination of the following: anomalous fire behaviour, involving extremely high energy releases, very rapid rate of spread, very large flame heights; massive emission of smoke and greenhouse gas pollution; prolonged duration of fires, enormous geographical scale of burned areas, or both; fires causing unusually adverse biological, atmospheric or geomorphological effects.
- Anthropocene
-
The geologically novel planetary state resulting from human activities, although the start date of the state is debated.
- Pyrogeography
-
The holistic study of fire on Earth achieved by combining and synthesizing knowledge and methods from the sciences and humanities.
- Dendrochronology
-
Analysis of growth rings in the trunks of suitable tree species can enable reconstruction of past environmental conditions, resolved to annual or seasonal scales.
- Fire intensity
-
The amount of energy released per unit time from a fire front.
- Fire severity
-
A measure of the biological impact of fires, routinely assessed by the degree of canopy or understory defoliation and foliage consumption.
- Aridification
-
A process where climate change can lead to sustained regional drying with concomitant changes in vegetation, fire regimes and geomorphological processes.
- Climate refugia
-
A landscape setting with an atypical climate where species poorly adapted to ambient environmental conditions are able to persist, for example, a cloudy mountain top.
- Fire refugia
-
A landscape setting that limits the egress of fires, enabling species poorly adapted to ambient fire regimes to persist, such as a deep ravine.
- Wildlandâurban interface
-
The intermix of urban areas with flammable vegetation that is the locus of the most deadly and economically destructive wildfires.
- Biomass smoke
-
A dynamic mixture of gases and aerosols, made up of organic and inorganic chemical species, emitted during the combustion of biomass.
- Pyro-tornadoes
-
Extreme fire behaviours can result in intense localized convection that spawns a violently rotating column of burning gases and debris.
Rights and permissions
About this article
Cite this article
Bowman, D.M.J.S., Kolden, C.A., Abatzoglou, J.T. et al. Vegetation fires in the Anthropocene. Nat Rev Earth Environ 1, 500â515 (2020). https://doi.org/10.1038/s43017-020-0085-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-020-0085-3
This article is cited by
-
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Carbon Balance and Management (2024)
-
Spatial and temporal patterns and driving factors of forest fires based on an optimal parameter-based geographic detector in the Panxi region, Southwest China
Fire Ecology (2024)
-
Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region
Fire Ecology (2024)
-
Frequent burning and limited stand-replacing fire supports Mexican spotted owl pair occupancy
Fire Ecology (2024)
-
Coexisting with wildfire: strengthening collective capacity by changing the status quo
Fire Ecology (2024)