Issue 73, 2016, Issue in Progress

PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing

Abstract

Designing composite nanomaterials that display multiple antibacterial mechanisms offers new prototype against bacterial resistance. This study presents a multi-component composite-based nanofiber embodying the antibacterial and physiochemical properties of silver nanoparticles (Ag NPs), graphene oxide (GO), chitosan (CS), and curcumin (CUR). Physiologically stable PEGylated GO–Ag NP–CUR nanocomposites were synthesized, with the PEGylated GO serving as the template. The as-synthesized nanocomposite was incorporated into the CS/polyvinyl alcohol (PVA) nanofiber. The successful formation and stability of the PEGylated-GO–Ag NP–CUR composite nanofiber were characterized by various techniques. The antibacterial potential of the PEGylated-GO–Ag NP–CUR composite nanofiber was evaluated and showed an enhanced antibacterial effect compared to various nanoformulations. The plausible antibacterial mechanism of the PEGylated-GO–Ag NP–CUR nanofiber was determined and depicted herein. The presence of GO in the composite nanofiber enhances its mechanical properties compared to CS/PVA nanofiber, with an ultimate tensile strength (UTS) of 25 MPa compared to 7.2 MPa and a Young's modulus (E) of 363.7 MPa compared to 73 MPa. The biocompatibility of the nanofiber mat was confirmed by in vitro cell viability assay. Therefore a facile approach for the design of a biocompatible wound dressing with enhanced mechanical and antibacterial property was explored and detailed herein.

Graphical abstract: PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2016
Accepted
01 Jul 2016
First published
04 Jul 2016

RSC Adv., 2016,6, 69103-69116

PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing

P. Dubey and P. Gopinath, RSC Adv., 2016, 6, 69103 DOI: 10.1039/C6RA12192F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements