Issue 12, 2018

Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction

Abstract

Herein, we construct a novel electrocatalyst with Fe–Co dual sites embedded in N-doped carbon nanotubes ((Fe,Co)/CNT), which exhibits inimitable advantages towards the oxygen reduction reaction. The electrocatalyst shows state-of-the-art ORR performance with an admirable onset potential (Eonset, 1.15 V vs. 1.05 V) and half-wave potential (E1/2, 0.954 V vs. 0.842 V), outperforming those of the commercial Pt/C. The ORR test reveals that the performance of the (Fe,Co)/CNT is superior to most of the reported non-precious catalysts in alkaline electrolytes. Furthermore, when employed as a cathode catalyst in a Zn–air battery, the (Fe,Co)/CNT exhibits high voltages of 1.31 V and 1.23 V at discharge current densities of 20 mA cm−2 and 50 mA cm−2, respectively. In addition, the power density and the specific energy density reach 260 mW cm−2 and 870 W h kgZn−1. We discover that the Fe–Co dual sites embedded in N-doped porous carbon are beneficial for the activation of oxygen by weakening the O[double bond, length as m-dash]O bonds.

Graphical abstract: Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction

Supplementary files

Article information

Article type
Communication
Submitted
10 Sep 2018
Accepted
14 Nov 2018
First published
15 Nov 2018

Energy Environ. Sci., 2018,11, 3375-3379

Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction

J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao, H. Zhang, M. Zhu, Q. Xu, X. Wang, C. Zhao, Y. Qu, Z. Yang, T. Yao, Y. Li, Y. Lin, Y. Wu and Y. Li, Energy Environ. Sci., 2018, 11, 3375 DOI: 10.1039/C8EE02656D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements