Issue 47, 2020

Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

Abstract

Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers’ rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach—the multiparticle collision dynamics method—is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers’ rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.

Graphical abstract: Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2020
Accepted
12 Oct 2020
First published
15 Oct 2020

Soft Matter, 2020,16, 10676-10687

Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion

J. Clopés, G. Gompper and R. G. Winkler, Soft Matter, 2020, 16, 10676 DOI: 10.1039/D0SM01569E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements