Review of short-text classification
International Journal of Web Information Systems
ISSN: 1744-0084
Article publication date: 21 January 2019
Issue publication date: 10 June 2019
Abstract
Purpose
Rapid developments in social networks and their usage in everyday life have caused an explosion in the amount of short electronic documents. Thus, the need to classify this type of document based on their content has a significant implication in many applications. The need to classify these documents in relevant classes according to their text contents should be interested in many practical reasons. Short-text classification is an essential step in many applications, such as spam filtering, sentiment analysis, Twitter personalization, customer review and many other applications related to social networks. Reviews on short text and its application are limited. Thus, this paper aims to discuss the characteristics of short text, its challenges and difficulties in classification. The paper attempt to introduce all stages in principle classification, the technique used in each stage and the possible development trend in each stage.
Design/methodology/approach
The paper as a review of the main aspect of short-text classification. The paper is structured based on the classification task stage.
Findings
This paper discusses related issues and approaches to these problems. Further research could be conducted to address the challenges in short texts and avoid poor accuracy in classification. Problems in low performance can be solved by using optimized solutions, such as genetic algorithms that are powerful in enhancing the quality of selected features. Soft computing solution has a fuzzy logic that makes short-text problems a promising area of research.
Originality/value
Using a powerful short-text classification method significantly affects many applications in terms of efficiency enhancement. Current solutions still have low performance, implying the need for improvement. This paper discusses related issues and approaches to these problems.
Keywords
Acknowledgements
Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
Citation
Alsmadi, I. and Gan, K.H. (2019), "Review of short-text classification", International Journal of Web Information Systems, Vol. 15 No. 2, pp. 155-182. https://doi.org/10.1108/IJWIS-12-2017-0083
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited