MFS-LDA: a multi-feature space tag recommendation model for cold start problem
Program: electronic library and information systems
ISSN: 0033-0337
Article publication date: 5 September 2017
Abstract
Purpose
Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem.
Design/methodology/approach
MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem).
Findings
Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods.
Originality/value
The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.
Keywords
Citation
Masood, M.A., Abbasi, R.A., Maqbool, O., Mushtaq, M., Aljohani, N.R., Daud, A., Aslam, M.A. and Alowibdi, J.S. (2017), "MFS-LDA: a multi-feature space tag recommendation model for cold start problem", Program: electronic library and information systems, Vol. 51 No. 3, pp. 218-234. https://doi.org/10.1108/PROG-01-2017-0002
Publisher
:Emerald Publishing Limited
Copyright © 2017, Emerald Publishing Limited