Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Frequency Synchronization and Its Possible Role in Microworld Phenomena

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We note the active interest of Yu.I. Neimark for research of frequency synchronization, as well as his substantial support for research in this area. In this work we discuss the main, not yet fully established, definitions and concepts of the theory of frequency synchronization. We consider significant differences between the phenomena of synchronization, self-synchronization, and entrainment. We emphasize that self-synchronization belongs to the class of self-organization phenomena, which is often ignored. We list some relevant unsolved problems of the theory of frequency synchronization, among them being the question of the possible fundamental role of synchronization in the microworld, which is discussed in detail. We express an opinion that it is advisable to attempt to describe physical reality by unified deterministic laws of physics, taking into account other new achievements in nonlinear dynamics listed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtovnik, A. S. & Neimark, Yu. I. On Synchronization of Dynamical Systems. Prikl. Mat. Mekh. 38(no. 5), 749–758 (1974).

    Google Scholar 

  2. Neimark, Yu.I. and Landa, P.S.Stokhasticheskie i khaoticheskie kolebaniya, Moscow: Nauka, 1987; Moscow: URSS, 2009, 2nd ed. Translated into English under the title Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992.

  3. Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 20(no. 2), 130–141 (1963).

    Article  MathSciNet  Google Scholar 

  4. Strogatz, S.H.SYNC: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, New York: Penguin Group, 2004. Translated under the title Ritm Vselennoi. Kak iz khaosa voznikaet poryadok v prirode i v povsednevnoi zhizni, Moscow: Mann, Ivanov i Ferber, 2017.

  5. Blekhman, I.I., Sinkhronizatsiya v prirode i tekhnike, Moscow: Nauka, 1981. Translated into English under the title Synchronization in Science and Technology, New York: ASME, 1988.

  6. Blekhman, I. I. Self-Synchronization of the Vibrators for Some Vibrating Machines. Inzhenern. Sb. 16, 49–72 (1953).

    Google Scholar 

  7. Kononenko, V. O. Kolebatelanye sistemy s ogranichennym vozbuzhdeniem (Oscillatory Systems with Bounded Excitation). (Nauka, Moscow, 1964).

    Google Scholar 

  8. Krasnopol’skaya, T. Z. & Shvets, A. Yu Regulyarnaya i khaoticheskaya dinamika sistem s ogranichennym vozbuzhdeniem (Regular and Chaotic Dynamics of Systems with Bounded Excitation). (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2008).

    Google Scholar 

  9. Andronov, A. A., Vitt, A. A. & Khaikin, S. E. Teoriya kolebanii (Theory of Oscillations). (Fizmatlit, Moscow, 1959).

    MATH  Google Scholar 

  10. Blekhman, I. I. Sinkhronizatsiya dinamicheskikh sistem (Synchronization of Dynamical Systems). (Nauka, Moscow, 1971).

    MATH  Google Scholar 

  11. Blekhman, I. I., Fradkov, A. L., Nijemeier, H. & Pogromsky, A. Yu On Self-Synchronization and Controlled Synchronization. J. Syst. Control Lett. no. 31, 299–305 (1997).

    Article  MathSciNet  Google Scholar 

  12. Selected Topics in Vibrational Mechanics (Ser. on Stability, Vibration and Control of Systems: Series A, vol. 11), New Jersey: World Scientific, 2004.

  13. Klimontovich, Yu. L. Kvantovye generatory sveta i nelineinaya optika (Quantum Light Generators and Nonlinear Optics). (Prosveshchenie, Moscow, 1966).

    Google Scholar 

  14. Maneshin, P. K. & Khokhlov, R. V. Mutual Synchronization of Two Molecular Generators under Small Connection. Nauch. Dokl. Vyssh. Shk., Ser. Radiotekh. Elektron. no. 3, 74–83 (1958).

    Google Scholar 

  15. Oraevskii, A. N. Molekulyarnye generatory (Molecular Generators). (Nauka, Moscow, 1964).

    Google Scholar 

  16. Lyubimov, G. P. & Khokhlov, R. V. On Polarization of a Molecular Bundle by a Variable Field with Changing Amplitude and Phase. Zh. Eks. Teor. Fiz. 33(6 no. 12), 1396–1402 (1957).

    Google Scholar 

  17. Maiman, T. Stimulated Optical Radiation in Ruby. Nature 187(no. 4736), 493–494 (1960).

    Article  Google Scholar 

  18. Milovskii, N. D. & Yastrebova, G. V. On the Operation of a Circular Optical Quantum Generator Synchronized by an External Force. Kvantov. Elektron. 1(no. 11), 2333–2339 (1974).

    Google Scholar 

  19. Prokhorov, A. M., Anisimov, S. I. & Panshin, P. P. Laser Fusion. Usp. Fiz. Nauk 119(no. 401), 401–424 (1976).

    Article  Google Scholar 

  20. Zavtrak, S. T. & Volkov, I. V. Saser (Sound Amplification by Stimulated Emission of Radiation). Zh. Tekhn. Fiz. 67(no. 4), 92–100 (1997).

    Google Scholar 

  21. Likharev, K. K. & Ul’rikh, B. T. Sistemy s dzhozefsonovskimi kontaktami. Osnovy teorii (Systems with Josephson Contacts. Theoretical Foundations). (Mosk. Gos. Univ., Moscow, 1978).

    Google Scholar 

  22. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect. (Wiley, New York, 1982).

    Book  Google Scholar 

  23. Watanabe, S. & Strogatz, S. H. Constants of Motion for Superconducting Josephson Arrays. Phis. D 74(no. 3-4), 197–253 (1994).

    Article  Google Scholar 

  24. Pikovsky, A., Rosenblum, M., and Kurths, J.Synchronization. A Universal Concept in Nonlinear Science, New York: Cambridge Univ. Press, 2001. Translated under the title Sinkhronizatsiya. Fundamentalanoe nelineinoe yavlenie, Moscow: Tekhnosfera, 2003.

  25. Beletskii, V. V. & Khentov, A. A. Rezonansnye vrashcheniya nebesnykh tel (Resonance Rotations of Celestial Bodies). (Nizhegorod. Gemanitarnyi Tsentr, Nizhnii Novgorod, 1995).

    Google Scholar 

  26. Chechel’nitskii, A. M. Ekstremal’nost’, ustoichivost’, rezonansnost’ v astrodinamike i kosmonavtike (Extremality, Stability, and Resonance in Astrodynamics and Astronautics). (Mashinostroenie, Moscow, 1980).

    Google Scholar 

  27. Chechel’nitskii, A. M. Wave Structure, Quantization, and Megaspectroscopy of the Solar System, in Dinamika kosmicheskikh apparatov i issledovanie kosmicheskogo prostranstva (Dynamics of Spacecraft and Studies of the Space). (Mashinostroenie, Moscow, 1986).

    Google Scholar 

  28. Molchanov, A. M. On the Resonance Structure of the Solar System, in Sovremennye problemy nebesnoi mekhaniki i astrodinamiki (Modern Problems of Celestial Mechanics and Astrodynamics). (Nauka, Moscow, 1973).

    Google Scholar 

  29. Chetaev, N. G. Ustoichivost’ dvizheniya (Stability of Motion). 3rd ed (Gostekhizdat, Moscow, 1955).

    Google Scholar 

  30. Chetaev, N. G. Ustoichivost’ dvizheniya. Raboty po analiticheskoi mekhanike (Stability of Motion. Works in Analytic Mechanics). (Akad. Nauk USSR, Moscow, 1962).

    Google Scholar 

  31. Blekhman, I. I. & Vaisberg, L. A. Adaptive Properties of Dynamical Objects. Probl. Mashinostr. Nadezhn. Mashin no. 3, 23–29 (2006).

    Google Scholar 

  32. Blekhman, I.I.Multimode Character of Dynamical Systems as a Cause of Their Complex (“Chaotic”) Behaviour, Proc. 4th Int. Conf. on Computation Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), Cos Island, Greece, June, 2013.

  33. Blekhman, I.I., Dovgelya, E.G., Drogush, S.Ya., Kremer, E.B., Sazonov, G.T., and Semeshkin, S.S.Gipoteza o mekhanizme kvantovaniya chastot obrashcheniya tel v orbitalanykh sistemakh (Hypothesis on the Mechanism of Quantization for the Frequencies of Body Rotations in Orbital Systems), Association of Scientific Discovery Authors, no. A-043, 15.02.1995.

  34. Gubar’, Yu. N. Rezonansnye sootnosheniya mezhdu komptonovskimi chastotami i soizmerimost’ mass elementarnykh chastits (Resonance Relations between Compton Frequencies and Commensurability of Masses of Elemenary Particles). (Mosk. Gos. Univ., NII Yadernoi Fiziki, Moscow, 1983).

    Google Scholar 

  35. Gareev, F.A.Geometric Quantization of Micro- and Macrosystems. Planetary-Wave Structure of Hadronic Resonances, Comm. of the Joint Institute of Nuclear Studies, Dubna, 1996.

  36. Rabinovich, B. I. Superelitnye plazmennye kolatsa i orbity planet i sputnikov, izomorfnye orbity elektronov v vodorodopodobnykh atomakh (Super-Elite Plasma Rings and Orbits of Planets and Satellites, Isomorphic Orbits of Electrons in Hydrogen Type Atoms). (Inst. Kosm. Issled., Moscow, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blekhman, I. Frequency Synchronization and Its Possible Role in Microworld Phenomena. Autom Remote Control 81, 1405–1412 (2020). https://doi.org/10.1134/S0005117920080044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920080044

Keywords