Abstract
We note the active interest of Yu.I. Neimark for research of frequency synchronization, as well as his substantial support for research in this area. In this work we discuss the main, not yet fully established, definitions and concepts of the theory of frequency synchronization. We consider significant differences between the phenomena of synchronization, self-synchronization, and entrainment. We emphasize that self-synchronization belongs to the class of self-organization phenomena, which is often ignored. We list some relevant unsolved problems of the theory of frequency synchronization, among them being the question of the possible fundamental role of synchronization in the microworld, which is discussed in detail. We express an opinion that it is advisable to attempt to describe physical reality by unified deterministic laws of physics, taking into account other new achievements in nonlinear dynamics listed in this work.
Similar content being viewed by others
References
Gurtovnik, A. S. & Neimark, Yu. I. On Synchronization of Dynamical Systems. Prikl. Mat. Mekh. 38(no. 5), 749–758 (1974).
Neimark, Yu.I. and Landa, P.S.Stokhasticheskie i khaoticheskie kolebaniya, Moscow: Nauka, 1987; Moscow: URSS, 2009, 2nd ed. Translated into English under the title Stochastic and Chaotic Oscillations, Dordrecht: Kluwer, 1992.
Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 20(no. 2), 130–141 (1963).
Strogatz, S.H.SYNC: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, New York: Penguin Group, 2004. Translated under the title Ritm Vselennoi. Kak iz khaosa voznikaet poryadok v prirode i v povsednevnoi zhizni, Moscow: Mann, Ivanov i Ferber, 2017.
Blekhman, I.I., Sinkhronizatsiya v prirode i tekhnike, Moscow: Nauka, 1981. Translated into English under the title Synchronization in Science and Technology, New York: ASME, 1988.
Blekhman, I. I. Self-Synchronization of the Vibrators for Some Vibrating Machines. Inzhenern. Sb. 16, 49–72 (1953).
Kononenko, V. O. Kolebatelanye sistemy s ogranichennym vozbuzhdeniem (Oscillatory Systems with Bounded Excitation). (Nauka, Moscow, 1964).
Krasnopol’skaya, T. Z. & Shvets, A. Yu Regulyarnaya i khaoticheskaya dinamika sistem s ogranichennym vozbuzhdeniem (Regular and Chaotic Dynamics of Systems with Bounded Excitation). (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2008).
Andronov, A. A., Vitt, A. A. & Khaikin, S. E. Teoriya kolebanii (Theory of Oscillations). (Fizmatlit, Moscow, 1959).
Blekhman, I. I. Sinkhronizatsiya dinamicheskikh sistem (Synchronization of Dynamical Systems). (Nauka, Moscow, 1971).
Blekhman, I. I., Fradkov, A. L., Nijemeier, H. & Pogromsky, A. Yu On Self-Synchronization and Controlled Synchronization. J. Syst. Control Lett. no. 31, 299–305 (1997).
Selected Topics in Vibrational Mechanics (Ser. on Stability, Vibration and Control of Systems: Series A, vol. 11), New Jersey: World Scientific, 2004.
Klimontovich, Yu. L. Kvantovye generatory sveta i nelineinaya optika (Quantum Light Generators and Nonlinear Optics). (Prosveshchenie, Moscow, 1966).
Maneshin, P. K. & Khokhlov, R. V. Mutual Synchronization of Two Molecular Generators under Small Connection. Nauch. Dokl. Vyssh. Shk., Ser. Radiotekh. Elektron. no. 3, 74–83 (1958).
Oraevskii, A. N. Molekulyarnye generatory (Molecular Generators). (Nauka, Moscow, 1964).
Lyubimov, G. P. & Khokhlov, R. V. On Polarization of a Molecular Bundle by a Variable Field with Changing Amplitude and Phase. Zh. Eks. Teor. Fiz. 33(6 no. 12), 1396–1402 (1957).
Maiman, T. Stimulated Optical Radiation in Ruby. Nature 187(no. 4736), 493–494 (1960).
Milovskii, N. D. & Yastrebova, G. V. On the Operation of a Circular Optical Quantum Generator Synchronized by an External Force. Kvantov. Elektron. 1(no. 11), 2333–2339 (1974).
Prokhorov, A. M., Anisimov, S. I. & Panshin, P. P. Laser Fusion. Usp. Fiz. Nauk 119(no. 401), 401–424 (1976).
Zavtrak, S. T. & Volkov, I. V. Saser (Sound Amplification by Stimulated Emission of Radiation). Zh. Tekhn. Fiz. 67(no. 4), 92–100 (1997).
Likharev, K. K. & Ul’rikh, B. T. Sistemy s dzhozefsonovskimi kontaktami. Osnovy teorii (Systems with Josephson Contacts. Theoretical Foundations). (Mosk. Gos. Univ., Moscow, 1978).
Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect. (Wiley, New York, 1982).
Watanabe, S. & Strogatz, S. H. Constants of Motion for Superconducting Josephson Arrays. Phis. D 74(no. 3-4), 197–253 (1994).
Pikovsky, A., Rosenblum, M., and Kurths, J.Synchronization. A Universal Concept in Nonlinear Science, New York: Cambridge Univ. Press, 2001. Translated under the title Sinkhronizatsiya. Fundamentalanoe nelineinoe yavlenie, Moscow: Tekhnosfera, 2003.
Beletskii, V. V. & Khentov, A. A. Rezonansnye vrashcheniya nebesnykh tel (Resonance Rotations of Celestial Bodies). (Nizhegorod. Gemanitarnyi Tsentr, Nizhnii Novgorod, 1995).
Chechel’nitskii, A. M. Ekstremal’nost’, ustoichivost’, rezonansnost’ v astrodinamike i kosmonavtike (Extremality, Stability, and Resonance in Astrodynamics and Astronautics). (Mashinostroenie, Moscow, 1980).
Chechel’nitskii, A. M. Wave Structure, Quantization, and Megaspectroscopy of the Solar System, in Dinamika kosmicheskikh apparatov i issledovanie kosmicheskogo prostranstva (Dynamics of Spacecraft and Studies of the Space). (Mashinostroenie, Moscow, 1986).
Molchanov, A. M. On the Resonance Structure of the Solar System, in Sovremennye problemy nebesnoi mekhaniki i astrodinamiki (Modern Problems of Celestial Mechanics and Astrodynamics). (Nauka, Moscow, 1973).
Chetaev, N. G. Ustoichivost’ dvizheniya (Stability of Motion). 3rd ed (Gostekhizdat, Moscow, 1955).
Chetaev, N. G. Ustoichivost’ dvizheniya. Raboty po analiticheskoi mekhanike (Stability of Motion. Works in Analytic Mechanics). (Akad. Nauk USSR, Moscow, 1962).
Blekhman, I. I. & Vaisberg, L. A. Adaptive Properties of Dynamical Objects. Probl. Mashinostr. Nadezhn. Mashin no. 3, 23–29 (2006).
Blekhman, I.I.Multimode Character of Dynamical Systems as a Cause of Their Complex (“Chaotic”) Behaviour, Proc. 4th Int. Conf. on Computation Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), Cos Island, Greece, June, 2013.
Blekhman, I.I., Dovgelya, E.G., Drogush, S.Ya., Kremer, E.B., Sazonov, G.T., and Semeshkin, S.S.Gipoteza o mekhanizme kvantovaniya chastot obrashcheniya tel v orbitalanykh sistemakh (Hypothesis on the Mechanism of Quantization for the Frequencies of Body Rotations in Orbital Systems), Association of Scientific Discovery Authors, no. A-043, 15.02.1995.
Gubar’, Yu. N. Rezonansnye sootnosheniya mezhdu komptonovskimi chastotami i soizmerimost’ mass elementarnykh chastits (Resonance Relations between Compton Frequencies and Commensurability of Masses of Elemenary Particles). (Mosk. Gos. Univ., NII Yadernoi Fiziki, Moscow, 1983).
Gareev, F.A.Geometric Quantization of Micro- and Macrosystems. Planetary-Wave Structure of Hadronic Resonances, Comm. of the Joint Institute of Nuclear Studies, Dubna, 1996.
Rabinovich, B. I. Superelitnye plazmennye kolatsa i orbity planet i sputnikov, izomorfnye orbity elektronov v vodorodopodobnykh atomakh (Super-Elite Plasma Rings and Orbits of Planets and Satellites, Isomorphic Orbits of Electrons in Hydrogen Type Atoms). (Inst. Kosm. Issled., Moscow, 2005).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blekhman, I. Frequency Synchronization and Its Possible Role in Microworld Phenomena. Autom Remote Control 81, 1405–1412 (2020). https://doi.org/10.1134/S0005117920080044
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117920080044