Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1007352.1007378acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Multilinear formulas and skepticism of quantum computing

Published: 13 June 2004 Publication History

Abstract

Several researchers, including Leonid Levin, Gerard 't Hooft, and Stephen Wolfram, have argued that quantum mechanics will break down before the factoring of large numbers becomes possible. If this is true, then there should be a natural set of quantum states that can account for all quantum computing experiments performed to date, but not for Shor's factoring algorithm. We investigate as a candidate the set of states expressible by a polynomial number of additions and tensor products. Using a recent lower bound on multilinear formula size due to Raz, we then show that states arising in quantum error-correction require nΩ(log n) additions and tensor products even to approximate, which incidentally yields the first superpolynomial gap between general and multilinear formula size of functions. More broadly, we introduce a complexity classification of pure quantum states, and prove many basic facts about this classification. Our goal is to refine vague ideas about a breakdown of quantum mechanics into specific hypotheses that might be experimentally testable in the near future.

References

[1]
S. Aaronson. Book review on A New Kind of Science, Quantum Information and Computation (QIC) 2(5), 2002.
[2]
D. S. Abrams and S. Lloyd. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems, Phys. Rev. Lett. 81:3992--3995, 1998.
[3]
D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error, Proc. ACM STOC, pp. 176--188, 1997.
[4]
D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge, Proc. ACM STOC, pp. 20--29, 2003.
[5]
A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani, and A. Wigderson. The quantum communication complexity of sampling, SIAM J. Comput. 32:1570--1585, 2003.
[6]
M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger. Wave-particle duality of C60 molecules, Nature 401:680--682, 1999.
[7]
A. Aspect, P. Grangier, and G. Roger. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities, Phys. Rev. Lett. 49:91--94, 1982.
[8]
S. L. Braunstein, C. M. Caves, N. Linden, S. Popescu, and R. Schack. Separability of very noisy mixed states and implications for NMR quantum computing, Phys. Rev. Lett. 83:1054--1057, 1999.
[9]
H. J. Briegel and R. Raussendorf. Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86:910--913, 2001.
[10]
P. Burgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, Springer-Verlag, 1997.
[11]
A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist, Phys. Rev. A 54:1098--1105, 1996.
[12]
J. Cronin. CP symmetry violation---the search for its origin, Nobel Lecture, December 8, 1980.
[13]
W. Dur and H. J. Briegel. Stability of macroscopic entanglement under decoherence, submitted, 2003.
[14]
V. Fitch. The discovery of charge-conjugation parity asymmetry, Nobel Lecture, December 8, 1980.
[15]
J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens. Quantum superposition of distinct macroscopic states, Nature 406:43--46, 2000.
[16]
M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy, Math. Systems Theory 17:13--27, 1984.
[17]
G. C. Ghirardi, A. Rimini, and T. Weber. Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D, 34:470, 1986.
[18]
S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith. Entangled quantum state of magnetic dipoles, Nature 425:48--51, 2003.
[19]
O. Goldreich. On quantum computing, 2004. www. wisdom. weizmann. ac. il/ oded/on-qc. html
[20]
D. Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A. 54:1862--1868, 1996.
[21]
D. Gottesman. The Heisenberg representation of quantum computers, Int. Conf. on Group Theoretic Methods in Physics, 1998.
[22]
F. Green, S. Homer, C. Moore, and C. Pollett. Counting, fanout, and the complexity of quantum ACC, Quantum Information and Computation 2(1):35--65, 2002.
[23]
G. 't Hooft. Quantum gravity as a dissipative deterministic system, Classical and Quantum Gravity 16:3263--3279, 1999.
[24]
D. Janzing, P. Wocjan, and T. Beth. Cooling and low energy state preparation for 3-local Hamiltonians are FQMA-complete, manuscript, 2003.
[25]
A. Yu. Kitaev. Quantum computation: algorithms and error correction, Russian Math. Surveys 52(6):1191--1249, 1997.
[26]
E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Implementation of the five qubit error correction benchmark, Phys. Rev. Lett. 86:5811, 2001.
[27]
E. Knill, R. Laflamme, R. Martinez, and C. -H. Tseng. An algorithmic benchmark for quantum information processing, Nature 404:368--370, 2000.
[28]
E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation, Science 279:342, 1998.
[29]
A. J. Leggett. Testing the limits of quantum mechanics: motivation, state of play, prospects, J. Phys. Condensed Matter 14:R415--451, 2002.
[30]
L. Levin. Polynomial time and extravagant models, in The tale of one-way functions, Problems of Information Transmission 39(1), 2003.
[31]
L. Levin, D. Gottesman, P. Shor, et al. Discussion on sci. physics. research newsgroup, February-March 2000.
[32]
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information, Cambridge Univ. Press, 2000.
[33]
R. Penrose. The Emperor's New Mind, Oxford Univ. Press, 1989.
[34]
R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum computation on cluster states, Phys. Rev. A 68:022312, 2003.
[35]
R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size, this Proceedings, 2004.
[36]
P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5):1484--1509, 1997.
[37]
A. Steane. Multiple particle interference and quantum error correction, Proc. Roy. Soc. Lond. A, 452:2551--2577, 1996.
[38]
G. Vidal. Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91:147902, 2003.
[39]
S. Wolfram. A New Kind of Science, Wolfram Media, 2002.

Cited By

View all
  • (2024)Quantum State Preparation Using an Exact CNOT Synthesis Formulation2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546633(1-6)Online publication date: 25-Mar-2024
  • (2023)Quantum Gauge Networks: A New Kind of Tensor NetworkQuantum10.22331/q-2023-09-14-11137(1113)Online publication date: 14-Sep-2023
  • (2023)LIMDD: A Decision Diagram for Simulation of Quantum Computing Including Stabilizer StatesQuantum10.22331/q-2023-09-11-11087(1108)Online publication date: 11-Sep-2023
  • Show More Cited By

Index Terms

  1. Multilinear formulas and skepticism of quantum computing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
    June 2004
    660 pages
    ISBN:1581138520
    DOI:10.1145/1007352
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 June 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. error-correcting codes
    2. matrix rank
    3. multilinear formula size
    4. quantum computing

    Qualifiers

    • Article

    Conference

    STOC04
    Sponsor:
    STOC04: Symposium of Theory of Computing 2004
    June 13 - 16, 2004
    IL, Chicago, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Quantum State Preparation Using an Exact CNOT Synthesis Formulation2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546633(1-6)Online publication date: 25-Mar-2024
    • (2023)Quantum Gauge Networks: A New Kind of Tensor NetworkQuantum10.22331/q-2023-09-14-11137(1113)Online publication date: 14-Sep-2023
    • (2023)LIMDD: A Decision Diagram for Simulation of Quantum Computing Including Stabilizer StatesQuantum10.22331/q-2023-09-11-11087(1108)Online publication date: 11-Sep-2023
    • (2022)Circuits for measurement based quantum state preparationProceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe10.5555/3539845.3539927(328-333)Online publication date: 14-Mar-2022
    • (2022)Circuits for Measurement Based Quantum State Preparation2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE54114.2022.9774680(328-333)Online publication date: 14-Mar-2022
    • (2021)An Efficient Algorithm for Sparse Quantum State Preparation2021 58th ACM/IEEE Design Automation Conference (DAC)10.1109/DAC18074.2021.9586240(433-438)Online publication date: 5-Dec-2021
    • (2021)Quantifying the Difference between Many-Body Quantum StatesPhysical Review Letters10.1103/PhysRevLett.126.170502126:17Online publication date: 27-Apr-2021
    • (2017)Landau Quantisation and Renormalisation of Rabi SplittingMicrocavities10.1093/oso/9780198782995.005.0003(557-560)Online publication date: 24-Aug-2017
    • (2017)Derivation of the Landau Criterion of Superfluidity and Landau FormulaMicrocavities10.1093/oso/9780198782995.005.0002(555-556)Online publication date: 24-Aug-2017
    • (2017)Scattering Rates of Polariton RelaxationMicrocavities10.1093/oso/9780198782995.005.0001(547-554)Online publication date: 24-Aug-2017
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media