Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1007352.1007436acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Lower bounds for linear degeneracy testing

Published: 13 June 2004 Publication History

Abstract

In the late nineties Erickson proved a remarkable lower bound on the decision tree complexity of one of the central problems of computational geometry: given n numbers, do any r of them add up to 0? His lower bound of Ω(nr/2⌉), for any fixed r, is optimal if the polynomials at the nodes are linear and at most r-variate. We generalize his bound to s-variate polynomials for s>>r. Erickson's bound decays quickly as r grows and never reaches above pseudo-polynomial: we provide an exponential improvement. Our arguments are based on three ideas: (i) a geometrization of Erickson's proof technique; (ii) the use of error-correcting codes; and (iii) a tensor product construction for permutation matrices.

References

[1]
Arkin, E. M., Chiang, Y. -J., Held, M., Mitchell, J. S. B., Sacristan, V., Skiena, S. S., Yang, T. -C. On minimum-area hulls, Algorithmica 21 (1998), 119--136.
[2]
Barequet, G., Har-Peled, S. Polygon containment and translational min-Hausdorff-distance between segment sets are 3SUM-hard, Int. J. Comput. Geom. and App. 11 (2001), 465--474.
[3]
Barrera, A. H. Finding an o(n2log n) algorithm is sometimes hard, Proc. 8th Canad. Conf. Comput. Geom., Ottawa, Ontario, Canada, Aug. 1996, 289--294.
[4]
Ben-Or, M. Lower bounds for algebraic computation trees, Proc. 15th Annual ACM Sympos. Theory Comput. (1983), 80--86.
[5]
Björner, A., Lovász, L., Yao, A. C. Linear decision trees: volume estimates and topological bounds, Proc. 24th Annual ACM Symp. Theory Comput. (1992), 170--177.
[6]
Bose, P., van Kreveld, M., and Toussaint, G. Filling polyhedral molds, Proc. 3rd Workshop Algorithms Data Structures, LNCS, Springer-Verlag 709 (1993), 210--221.
[7]
de Berg, M., de Groot, M., Overmars, M. Perfect binary space partitions, Comput. Geom. Theory Appl. 7 (1997), 81--91.
[8]
Dietzfelbinger, M. Lower bounds for sorting of sums, Theoret. Comput. Sci. 66 (1989), 137--155.
[9]
Dobkin, D. P., Lipton, R. J. On the complexity of computations under varying set of primitives, Journal of Computer and Systems Science 18 (1979), 86--91.
[10]
Erickson J. Lower bounds for linear satisfiability problems, Chicago Journal of Theoretical Computer Science 8, 1999.
[11]
Erickson J. New lower bounds for convex hull problems in odd dimensions, SIAM J. Comput. 28 (1999), 1198--1214.
[12]
Erickson J., Seidel, R. Better lower bounds on detecting affine and spherical degeneracies, Disc. Comput. Geom. 13 (1995) 41--57.
[13]
Fredman, M. L. How good is the information theory bound in sorting, Theoret. Comput. Sci. 1 (1976), 355--361.
[14]
Gajentaan, A., Overmars, M. On a class of O(n2) problems in computational geometry, Comput. Geom. Theory Appl. 5 (1995), 165--185.
[15]
Grigoriev, D., Karpinski, M., Meyer auf der Heide, F., Smolensky, R. A lower bound for randomized algebraic decision trees, Proc. 28th Annual ACM Symp. Theory Comput. (1996), 612--619.
[16]
Grigoriev, D., Karpinski, M., Vorobjov, N. Lower bound on testing membership to a polyhedron by algebraic decision and computation trees, Discrete Comput. Geom. 17 (1997), 191--215.
[17]
MacWillams, F. J., Sloane, N. J. A. The Theory of Error Correcting Codes, North Holland, 1977.
[18]
Matousek, J. On geometric optimization with few violated constraints, Disc. Comput. Geom. 14 (1995), 365--384.
[19]
Meyer auf der Heide, F. A polynomial linear search algorithm for the n-dimensional knapsack problem, J. ACM 31 (1984), 668--676.
[20]
Nagura, J. On the interval containing at least one prime number, Proc. Japan Acad. 28 (1952), 177--181.
[21]
Steele, M., Yao, A. C. Lower bounds for algebraic decision trees, Journal of Algorithms 3 (1982), 1--8.
[22]
Yao, A. C. Decision tree complexity and Betti numbers, J. Comput. System Sci. 55 (1997), 36--43.
[23]
Yao, A. C. Algebraic decision trees and Euler characteristics, Theoret. Comput. Sci. 141 (1995), 133--150.
[24]
Yao, A. C. DIMACS Workshop on Intrinsic Complexity of Computation, April 10--13, 2000.

Cited By

View all
  • (2010)Towards polynomial lower bounds for dynamic problemsProceedings of the forty-second ACM symposium on Theory of computing10.1145/1806689.1806772(603-610)Online publication date: 5-Jun-2010

Index Terms

  1. Lower bounds for linear degeneracy testing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
    June 2004
    660 pages
    ISBN:1581138520
    DOI:10.1145/1007352
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 June 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bounds
    2. computational geometry
    3. linear decision trees
    4. lower

    Qualifiers

    • Article

    Conference

    STOC04
    Sponsor:
    STOC04: Symposium of Theory of Computing 2004
    June 13 - 16, 2004
    IL, Chicago, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Upcoming Conference

    STOC '25
    57th Annual ACM Symposium on Theory of Computing (STOC 2025)
    June 23 - 27, 2025
    Prague , Czech Republic

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2010)Towards polynomial lower bounds for dynamic problemsProceedings of the forty-second ACM symposium on Theory of computing10.1145/1806689.1806772(603-610)Online publication date: 5-Jun-2010

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media