Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1068009.1068289acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Meta-grammar constant creation with grammatical evolution by grammatical evolution

Published: 25 June 2005 Publication History

Abstract

This study examines the utility of meta-grammar constant generation on a series of benchmark problems. The performance of the meta-grammar approach is compared to a grammar which incorporates grammatical ephemeral random constants, digit concatenation, and an expression based approach. It is found that the meta-grammar approach to constant creation is particularly beneficial on the dynamic problem instances in terms of the best fitness values achieved.

References

[1]
O'Neill, M., Ryan, C. (1999). Automatic Generation of Caching Algorithms, In K. Miettinen and M.M. Mäkelä and J. Toivanen (Eds.) Proceedings of EUROGEN99, Jyväskylä, Finland, pp.127--134, University of Jyväskylä.
[2]
Dempsey, I., O'Neill, M. and Brabazon, T. (2002). Investigations into Market Index Trading Models Using Evolutionary Automatic Programming, In Lecture Notes in Artificial Intelligence, 2464,Proceedings of the 13th Irish Conference in Artificial Intelligence and Cognitive Science, pp. 165--170, edited by M. O'Neill, R. Sutcliffe, C. Ryan, M. Eaton and N. Griffith, Berlin: Springer-Verlag.
[3]
O'Neill, M., Dempsey, I., Brabazon, A., Ryan, C. (2003). Analysis of a Digit Concatenation Approach to Constant Creation. In LNCS 2610 Proceedings of the 6th European Conference on Genetic Programming, EuroGP 2003, pp.173--182. Springer-Verlag.
[4]
Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
[5]
O'Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers.
[6]
O'Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.
[7]
O'Neill, M., Ryan, C. (2001) Grammatical Evolution, IEEE Trans. Evolutionary Computation, 5(4):349--358, 2001.
[8]
Ryan C., Collins J.J., O'Neill M. (1998). Grammatical Evolution: Evolving Programs for an Arbitrary Language. Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming, 83--95, Springer-Verlag.
[9]
O'Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Grammatical Evolution. Genetic Programming and Evolvable Machines, Vol. 4 No. 1. Kluwer Academic Publishers, 2003.
[10]
O'Neill, M., Ryan, C. 2004. Grammatical Evolution by Grammatical Evolution: The Evolution of Grammar and Genetic Code. In Proceedings of EuroGP 2004, LNCS 3003, pp.138--149, Coimbra, Portugal, Springer 2004.
[11]
Dempsey, I., O'Neill, M., Brabazon, T. (2004). Grammatical Constant Creation. Proceedings of the Genetic and Evolutionary Computation Conference Part II, 447--458, Springer-Verlag.
[12]
Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press.
[13]
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Programming -- An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann.
[14]
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufmann.
[15]
Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers.
[16]
Holland, J. (1998). Emergence from Chaos to Order,Oxford: Oxford University Press.
[17]
Nie, J. (1997). Nonlinear time-series forecasting: A fuzzy-neural approach, Neurocomputing, 16:63--76.
[18]
Castillo, E. and Gutierrez, J. (1998). Nonlinear time series modeling and prediction using functional networks. Extracting information masked by chaos, Physics Letters A, 244:71--84.
[19]
Saxen, H. (1996). On the approximation of a quadratic map by a small neural network, Neurocomputing, 12:313--326.
[20]
May, R. (1976). Simple mathematical models with very complicated dynamics, Nature, 261:459--467.
[21]
Ryan, C., O'Neill, M. (2002). How to do anything with Grammars. Proc. of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference 2002, pp. 116--119.
[22]
Chomsky, N. (1975). Reflections on Language. Pantheon Books. New York.
[23]
Pinker, S. (1995). The language instinct: the new science of language and the mind. Penguin, 1995.
[24]
Lewin, B. (2000). Genes VII. Oxford University Press, 2001.
[25]
Efron, B., Tibshirani, R. (1993). An Introduction to the Bootstrap. CRC Press, ISBN 0-412-04231-2.

Cited By

View all
  • (2011)Evolving numerical constants in grammatical evolution with the ephemeral constant methodProceedings of the 15th Portugese conference on Progress in artificial intelligence10.5555/2051115.2051129(110-124)Online publication date: 10-Oct-2011
  • (2010)Genotype representations in grammatical evolutionApplied Soft Computing10.1016/j.asoc.2009.05.00310:1(36-43)Online publication date: 1-Jan-2010
  • (2008)Altering search rates of the meta and solution grammars in the mGGAProceedings of the 11th European conference on Genetic programming10.5555/1792694.1792727(362-373)Online publication date: 26-Mar-2008
  • Show More Cited By

Index Terms

  1. Meta-grammar constant creation with grammatical evolution by grammatical evolution

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '05: Proceedings of the 7th annual conference on Genetic and evolutionary computation
    June 2005
    2272 pages
    ISBN:1595930108
    DOI:10.1145/1068009
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 June 2005

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. constant creation
    2. digit concatenation
    3. ephemeral random constants
    4. genetic programming
    5. grammatical evolution
    6. meta-grammars

    Qualifiers

    • Article

    Conference

    GECCO05
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2011)Evolving numerical constants in grammatical evolution with the ephemeral constant methodProceedings of the 15th Portugese conference on Progress in artificial intelligence10.5555/2051115.2051129(110-124)Online publication date: 10-Oct-2011
    • (2010)Genotype representations in grammatical evolutionApplied Soft Computing10.1016/j.asoc.2009.05.00310:1(36-43)Online publication date: 1-Jan-2010
    • (2008)Altering search rates of the meta and solution grammars in the mGGAProceedings of the 11th European conference on Genetic programming10.5555/1792694.1792727(362-373)Online publication date: 26-Mar-2008
    • (2008)Exposing a bias toward short-length numbers in grammatical evolutionProceedings of the 11th European conference on Genetic programming10.5555/1792694.1792720(278-288)Online publication date: 26-Mar-2008
    • (2008)Altering Search Rates of the Meta and Solution Grammars in the mGGAGenetic Programming10.1007/978-3-540-78671-9_31(362-373)Online publication date: 2008
    • (2008)Exposing a Bias Toward Short-Length Numbers in Grammatical EvolutionGenetic Programming10.1007/978-3-540-78671-9_24(278-288)Online publication date: 2008
    • (2007)Christiansen Grammar EvolutionIEEE Transactions on Evolutionary Computation10.1109/TEVC.2006.88032711:1(77-90)Online publication date: 1-Feb-2007
    • (2006)Canonical form functions as a simple means for genetic programming to evolve human-interpretable functionsProceedings of the 8th annual conference on Genetic and evolutionary computation10.1145/1143997.1144147(855-862)Online publication date: 8-Jul-2006
    • (2006)Introducing Grammar Based Extensions for Grammatical Evolution2006 IEEE International Conference on Evolutionary Computation10.1109/CEC.2006.1688372(648-655)Online publication date: 2006
    • (2005)Constant generation for the financial domain using grammatical evolutionProceedings of the 7th annual workshop on Genetic and evolutionary computation10.1145/1102256.1102334(350-353)Online publication date: 25-Jun-2005

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media