Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1102351.1102436acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Independent subspace analysis using geodesic spanning trees

Published: 07 August 2005 Publication History

Abstract

A novel algorithm for performing Independent Subspace Analysis, the estimation of hidden independent subspaces is introduced. This task is a generalization of Independent Component Analysis. The algorithm works by estimating the multi-dimensional differential entropy. The estimation utilizes minimal geodesic spanning trees matched to the sample points. Numerical studies include (i) illustrative examples, (ii) a generalization of the cocktail-party problem to songs played by bands, and (iii) an example on mixed independent subspaces, where subspaces have dependent sources, which are pairwise independent.

References

[1]
Akaho, S., Kiuchi, Y., & Umeyama, S. (1999). MICA: Multimodal independent component analysis. Proc. IJCNN (pp. 927--932).
[2]
Amari, S., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind source separation. NIPS (pp. 757--763).
[3]
Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. JMLR, 3, 1--48.
[4]
Bach, F. R., & Jordan, M. I. (2003). Finding clusters in independent component analysis. Fourth Int. Symp. on ICA and BSS (pp. 891--896).
[5]
Banks, D., Lavine, M., & Newton, H. J. (1992). The minimal spanning tree for nonparametric regression and structure discovery. Comput. Sci. and Stat., 24, 370--374.
[6]
Bell, A. J., & Sejnowski, T. J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Comp., 7, 1129--1159.
[7]
Bell, A. J., & Sejnowski, T. J. (1997). The 'independent components' of natural scenes are edge filters. Vision Research, 37, 3327--3338.
[8]
Cardoso. J. (1998). Multidimensional independent component analysis. Proc. ICA SSP'98, Seattle, WA.
[9]
Comon, P. (1994). Independent component analysis, a new concept? Signal Proc., 36, 287--314.
[10]
Costa, J. A., & Hero, A. O. (2004). Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Proc., 52, 2210--2221.
[11]
Gretton, A., Herbrich, R., & Smola, A. (2003). The kernel mutual information. Proc. ICASSP.
[12]
Hero, A., & Michel, O. (1998). Robust entropy estimation strategies based on edge weighted random graphs. Proc. SPIE98 (pp. 250--261). San Diego, CA.
[13]
Hild, K. E., Erdogmus, D., & Prííncipe, J. (2001). Blind source separation using Renyi's mutual information. IEEE Signal Proc. Letters, 8, 174--176.
[14]
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: John Wiley.
[15]
Hyvärinen, A. (1999). Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Comp., 11, 1739--1768.
[16]
Hyvärinen, A., & Hoyer, P. (2000). Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Comp., 12, 1705--1720.
[17]
Jutten, C., & Herault, J. (1991). Blind separation of sources: An adaptive algorithm based on neuromimetic architecture. Signal Proc., 24, 1--10.
[18]
Kiviluoto, K., & Oja, E. (1998). Independent component analysis for parallel financial time series. Proc. ICONIP'98 (pp. 895--898).
[19]
Learned-Miller, E. G., & Fisher, J. W. (2003). ICA using spacings estimates of entropy. JMLR, 4, 1271--1295.
[20]
Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. NIPS (pp. 145--151).
[21]
Tenenbaum, J. B., de Silva, V., & Langford., J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 626--634.
[22]
Vigário, R., Jousmaki, V., Hamalainen, M., Hari, R., & Oja, E. (1998). Independent component analysis for identification of artifacts in magnetoencephalo-graphic recordings. NIPS (pp. 229--235).
[23]
Vollgraf, R., & Obermayer, K. (2001). Multidimensional ICA to separate correlated sources. NIPS (pp. 993--1000).
[24]
Yukich, J. E. (1998). Probability theory of classical euclidean optimization problems, vol. 1675 of Lecture Notes in Math. Springer-Verlag, Berlin.

Cited By

View all
  • (2019)Independent Component AnalysisNeural Networks and Statistical Learning10.1007/978-1-4471-7452-3_15(447-482)Online publication date: 13-Sep-2019
  • (2017)Subspace Projection Methods for Large Scale Image Data Analysis2017 IEEE Third International Conference on Multimedia Big Data (BigMM)10.1109/BigMM.2017.75(260-267)Online publication date: Apr-2017
  • (2016)Finite-sample analysis of fixed-k nearest neighbor density functional estimatorsProceedings of the 30th International Conference on Neural Information Processing Systems10.5555/3157096.3157233(1225-1233)Online publication date: 5-Dec-2016
  • Show More Cited By
  1. Independent subspace analysis using geodesic spanning trees

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICML '05: Proceedings of the 22nd international conference on Machine learning
      August 2005
      1113 pages
      ISBN:1595931805
      DOI:10.1145/1102351
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 August 2005

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate 140 of 548 submissions, 26%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2019)Independent Component AnalysisNeural Networks and Statistical Learning10.1007/978-1-4471-7452-3_15(447-482)Online publication date: 13-Sep-2019
      • (2017)Subspace Projection Methods for Large Scale Image Data Analysis2017 IEEE Third International Conference on Multimedia Big Data (BigMM)10.1109/BigMM.2017.75(260-267)Online publication date: Apr-2017
      • (2016)Finite-sample analysis of fixed-k nearest neighbor density functional estimatorsProceedings of the 30th International Conference on Neural Information Processing Systems10.5555/3157096.3157233(1225-1233)Online publication date: 5-Dec-2016
      • (2016)PWC-ICAComputational Intelligence and Neuroscience10.1155/2016/97548132016(20)Online publication date: 1-Jun-2016
      • (2015)Generalized Twin Gaussian processes using Sharma---Mittal divergenceMachine Language10.1007/s10994-015-5497-9100:2-3(399-424)Online publication date: 1-Sep-2015
      • (2014)Separation of Synchronous Sources Through Phase Locked Matrix FactorizationIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2013.229779125:10(1894-1908)Online publication date: Oct-2014
      • (2012)Separation theorem for independent subspace analysis and its consequencesPattern Recognition10.1016/j.patcog.2011.09.00745:4(1782-1791)Online publication date: 1-Apr-2012
      • (2010)Estimation of Rényi entropy and mutual information based on generalized nearest-neighbor graphsProceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 210.5555/2997046.2997102(1849-1857)Online publication date: 6-Dec-2010
      • (2010)Auto-regressive independent process analysis without combinatorial effortsPattern Analysis & Applications10.5555/2736754.273679013:1(1-13)Online publication date: 1-Feb-2010
      • (2009)Controlled complete ARMA independent process analysisProceedings of the 2009 international joint conference on Neural Networks10.5555/1704175.1704395(1521-1528)Online publication date: 14-Jun-2009
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media