Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1117201.1117263acmconferencesArticle/Chapter ViewAbstractPublication PagesfpgaConference Proceedingsconference-collections
Article

GSFAP adaptive filtering using log arithmetic for resource-constrained embedded systems

Published: 22 February 2006 Publication History
  • Get Citation Alerts
  • Abstract

    Adaptive filters are widely used in digital signal processing for such applications as system identification, noise cancellation, and in areas such as digital communication systems. Traditionally, small resource-constrained embedded systems have used the least computationally intensive filter adaptive algorithms based on least mean squares (LMS).The power-normalized version (NLMS) is typical example. More complex adaptive algorithms, such as recursive least squares (RLS), are usually too computationally expensive for implementation in small embedded systems.Our work deals with a floating-point-like implementation of the Gauss-Seidel fast affine projection (GSFAP) algorithm and shows that FPGAs are a highly suitable platform for more computationally intensive adaptive algorithms. FAP based algorithms are characterized by better adaptation properties than NLMS with only a slightly higher complexity, providing some compromise between the slow convergence of NLMS and the computational complexity of RLS.We present the design of an optimized core which implements GSFAP. To reduce the resource requirements we use logarithmic arithmetic, rather than conventional floating point, within the custom core. Our design makes effective use of the pipelined logarithmic addition units, and takes advantage of the very low cost of logarithmic multiplication and division.The resource requirements of the resulting GSFAP core are slightly higher than the requirements for the corresponding NLMS core. However, experiments show that GSFAP has adaptation properties much superior to NLMS which is demonstrated on a noise/echo cancellation example.

    Index Terms

    1. GSFAP adaptive filtering using log arithmetic for resource-constrained embedded systems

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      FPGA '06: Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays
      February 2006
      248 pages
      ISBN:1595932925
      DOI:10.1145/1117201
      • General Chair:
      • Steve Wilton,
      • Program Chair:
      • André DeHon
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 February 2006

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Article

      Conference

      FPGA06
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 125 of 627 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0

      Other Metrics

      Citations

      View Options

      Get Access

      Login options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media