Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1118299.1118433acmconferencesArticle/Chapter ViewAbstractPublication PagesaspdacConference Proceedingsconference-collections
Article

Mathematically assisted adaptive body bias (ABB) for temperature compensation in gigascale LSI systems

Published: 24 January 2006 Publication History

Abstract

Process variations and temperature variations can cause both the frequency and the leakage of the chip to vary significantly from their expected values, thereby decreasing the yield. Adaptive Body Bias (ABB) can be used to pull back the chip to the nominal operational region. We propose the use of this technique to counter temperature variations along with process variations. We present a CAD perspective for achieving process and temperature compensation using bidirectional ABB. Mathematical models are used to determine the exact amount of body bias required to optimize the delay and leakage, and an algorithmic flow that can be adopted for gigascale LSI systems is provided.

References

[1]
T. Chen and S. Naffziger. "Comparison of adaptive body bias (ABB) and adaptive supply voltage (ASV) for improving delay and leakage under the presence of process variation". In IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages 888--899, October 2003.
[2]
C. H. Wann, H. Chenming, K. Noda, D. Sinitsky, F. Assaderaghi, and J. Bokor, "Channel doping engineering of MOSFET with adaptable threshold voltage using body effect for low voltage and low power applications". In International Symposium of VLSI Technology, pages 159--163, June 1995.
[3]
T. Kuroda, T. Fujita, S. Mita, T. Nagamatu, S. Yoshioka, F. Sano, M. Norishima, M. Murota. M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai. "A 0.9 V 150 MHz 10 mW 2-D discrete cosine transform core processor with variable-threshold-voltage scheme". In IEEE International Solid-State Circuits Conference, pages 166--167, August 1996.
[4]
J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P. Chandrakasan, and V. De. "Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage". IEEE Journal of Solid-State Circuits, 37(11):1396--1402, November 2002.
[5]
J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and V. De. "Dynamic sleep transistor and body bias for active leakage power control of microprocessors". IEEE Journal of Solid-State Circuits, 38(11):1838--1845, November 2003.
[6]
J. W. Tschanz, S. G. Narendra, R. Nair, and V. De. "Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors". IEEE Journal of Solid-State Circuits, 38(5):826--829, May 2003.
[7]
S. Narendra, A. Keshavarzi, B. A. Bloechel, S. Borkar, and V. De. "Forward body bias for microprocessors in 130-nm technology generation and beyond". IEEE Journal of Solid-State Circuits, 38(5):696--701, May 2003.
[8]
G. Ono, M. Miyazaki, H. Tanaka, N. Ohkubo, and T. Kawahara. "Temperature referenced supply voltage and forward-body-bias control (TSFC) architecture for minimum power consumption". In European Solid State Circuits Conference, pages 391--394, September 2004.
[9]
T. Kuroda. "Low power CMOS digital design for multimedia processors". In International Conference for VLSI and CAD, pages 359--367, October 1999.
[10]
Device Group at UC Berkeley. "Berkeley Predictive Technology Model", 2002. Available at http://www-device.eecs.berkeley.edu/~ptm/.
[11]
H. Ananthan, C. H. Kim, and K. Roy. "Larger-than-Vdd forward body bias in sub-0.5V nanoscale CMOS". In International Symposium on Low Power Electronic Design, pages 8--13, 2004.
[12]
E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. "SIS: A system for sequential circuit synthesis". Technical Report UCB/ERL M92/41, 1992. Available at http://www-cad.eecs.berkeley.edu/research/sis.

Cited By

View all
  • (2022)Analog Frontend for Reliable Human Body Temperature Measurement for IoT DevicesElectronics10.3390/electronics1103043411:3(434)Online publication date: 31-Jan-2022
  • (2010)MODESTProceedings of the 16th ACM/IEEE international symposium on Low power electronics and design10.1145/1840845.1840873(129-134)Online publication date: 18-Aug-2010
  • (2010)Effect of Variations and Variation Tolerance in Logic CircuitsLow-Power Variation-Tolerant Design in Nanometer Silicon10.1007/978-1-4419-7418-1_3(83-108)Online publication date: 25-Oct-2010
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASP-DAC '06: Proceedings of the 2006 Asia and South Pacific Design Automation Conference
January 2006
998 pages
ISBN:0780394518

Sponsors

  • IEEE Circuits and Systems Society
  • SIGDA: ACM Special Interest Group on Design Automation
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IPSJ SIG-SLDM: Information Processing Society of Japan, SIG System LSI Design Methodology

Publisher

IEEE Press

Publication History

Published: 24 January 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Nonlinear Programming Problem (NLPP)
  2. daptive Body Bias (ABB)
  3. delay
  4. enumeration
  5. leakage
  6. process variations
  7. temperature variations

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 466 of 1,454 submissions, 32%

Upcoming Conference

ASPDAC '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Analog Frontend for Reliable Human Body Temperature Measurement for IoT DevicesElectronics10.3390/electronics1103043411:3(434)Online publication date: 31-Jan-2022
  • (2010)MODESTProceedings of the 16th ACM/IEEE international symposium on Low power electronics and design10.1145/1840845.1840873(129-134)Online publication date: 18-Aug-2010
  • (2010)Effect of Variations and Variation Tolerance in Logic CircuitsLow-Power Variation-Tolerant Design in Nanometer Silicon10.1007/978-1-4419-7418-1_3(83-108)Online publication date: 25-Oct-2010
  • (2009)Physically clustered forward body biasing for variability compensation in nanometer CMOS designProceedings of the Conference on Design, Automation and Test in Europe10.5555/1874620.1874658(154-159)Online publication date: 20-Apr-2009
  • (2009)A framework for scalable postsilicon statistical delay prediction under process variationsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2009.202173228:8(1201-1212)Online publication date: 1-Aug-2009
  • (2008)NBTI resilient circuits using adaptive body biasingProceedings of the 18th ACM Great Lakes symposium on VLSI10.1145/1366110.1366179(285-290)Online publication date: 4-May-2008
  • (2008)Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body BiasIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2008.91552927:3(481-494)Online publication date: 1-Mar-2008
  • (2007)Confidence scalable post-silicon statistical delay prediction under process variationsProceedings of the 44th annual Design Automation Conference10.1145/1278480.1278609(497-502)Online publication date: 4-Jun-2007
  • (2006)Electrothermal analysis and optimization techniques for nanoscale integrated circuitsProceedings of the 2006 Asia and South Pacific Design Automation Conference10.1145/1118299.1118359(219-222)Online publication date: 24-Jan-2006

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media