Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1143997.1144120acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Multiobjective genetic algorithms for materialized view selection in OLAP data warehouses

Published: 08 July 2006 Publication History

Abstract

On-Line Analytical Processing (OLAP) tools are frequently used in business, science and health to extract useful knowledgefrom massive databases. An important and hard optimization problem in OLAP data warehouses is the view selection problem, consisting of selecting a set of aggregate views of the data for speeding up future query processing. A common variant of the view selection problem addressed in the literature minimizes the sum of maintenance cost and query time on the view set. Converting what is inherently an optimization problem with multiple conflicting objectives into one with a single objective ignores the need and value of a variety of solutions offering various levels of trade-off between the objectives. We apply two non-elitist multiobjective evolutionary algorithms (MOEAs) to view selection under a size constraint. Our emphasis is to determine the suitability of the combination of MOEAs with constraint handling to the view selection problem, compared to a widely used greedy algorithm. We observe that the evolutionary process mimics that of the greedy in terms of the convergence process in the population. The MOEAs are competitive with the greedy on a variety of problem instances, often finding solutions dominating it in a reasonable amount of time.

References

[1]
S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materialized views and indexes in SQL databases. In Proc. VLDB 2000, pages 496--505, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers.]]
[2]
E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a multidimensional database. In Proc. VLDB 1997, pages 156--165, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers.]]
[3]
R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view selection problem. The VLDB Journal, 11(3):216--237, 2002.]]
[4]
L. Costa and P. Oliveira. An elitist genetic algorithm for multiobjective optimization. Metaheuristics: computer decision-making, pages 217--236, 2004.]]
[5]
K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In Proc. PPSN 2000, pages 849--858, London, UK, 2000. Springer-Verlag.]]
[6]
A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer, 2003.]]
[7]
C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In Proc. of the 5th Intl. Conf. on Genetic Algorithms, pages 416--423. Morgan Kaufmann Publishers., 1993.]]
[8]
D. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception and genetic algorithms. In Parallel Problem Solving From Nature, volume 2, pages 37--46. North-Holland, 1994.]]
[9]
H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for OLAP. In Proc. ICDE 1997, pages 208--219, Washington, DC, USA, 1997. IEEE Computer Society.]]
[10]
H. Gupta and I. S. Mumick. Selection of views to materialize under a maintenance cost constraint. In Proc. ICDT 1999, pages 453--470, London, UK, 1999. Springer-Verlag.]]
[11]
H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse. IEEE Trans. on Knowledge and Data Eng., 17(1):24--43, January 2005.]]
[12]
V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In Proc. SIGMOD 1996, pages 205--216, New York, NY, USA, 1996. ACM Press.]]
[13]
J. Horn, N. Nafpliotis, and D. Goldberg. A niched pareto genetic algorithm for multiobjective optimization. In Proc. of the First IEEE Conf. on Computational Intelligence., pages 82--87, 1994.]]
[14]
J.-T. Horng, Y.-J. Chang, B.-J. Liu, and C.-Y. Kao. Materialized view selection using genetic algorithms in a data warehouse system. In Proc. CEC 1999, volume 3, pages --2227, 1999.]]
[15]
P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search. J. Data Knowl. Eng., 42(1):89--111, 2002.]]
[16]
P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive peer-to-peer network for distributed caching of OLAP results. In Proc. SIGMOD 2002, pages 25--36, New York, NY, USA, 2002. ACM Press.]]
[17]
M. Keijzer, J. J. M. Guervós, G. Romero, and M. Schoenauer. Evolving objects: A general purpose evolutionary computation library. In 5th European Conf. on Artificial Evolution, pages 231--244. Springer-Verlag, 2002.]]
[18]
J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Proc. CEC 1999, pages 98--105. IEEE, 1999.]]
[19]
M. Lee and J. Hammer. Speeding up materialized view selection in data warehouses using a randomized algorithm. Intl. J. of Cooperative Information Systems, 10(3):327--353, 2001.]]
[20]
W. Liang, H. Wang, and M. E. Orlowska. Materialized view selection under the maintenance time constraint. J. Data Knowl. Eng., 37(2):203--216, 2001.]]
[21]
T. P. Nadeau and T. J. Teorey. Achieving scalability in OLAP materialized view selection. In Proc. DOLAP '02, pages 28--34, New York, NY, USA, 2002. ACM Press.]]
[22]
A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for multidimensional datasets. In Proc. VLDB 1998, pages 488--499. Morgan Kaufmann Publishers., 1998.]]
[23]
A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy. Storage estimation for multidimensional aggregates in the presence of hierarchies. In The VLDB Journal, pages 522--531, 1996.]]
[24]
D. Theodoratos, T. Dalamagas, A. Simitsis, and M. Stavropoulos. A randomized approach for the incremental design of an evolving data warehouse. In Proc. ER 2001, pages 325--338, London, UK, 2001. Springer-Verlag.]]
[25]
D. Theodoratos, S. Ligoudistianos, and T. Sellis. View selection for designing the global data warehouse. J. Data Knowl. Eng., 39(3):219--240, 2001.]]
[26]
D. Theodoratos and T. Sellis. Incremental design of a data warehouse. J. Intell. Inf. Syst., 15(1):7--27, 2000.]]
[27]
H. Uchiyama, K. Runapongsa, and T. J. Teorey. A progressive view materialization algorithm. In Proc. DOLAP 1999, pages 36--41, New York, NY, USA, 1999. ACM Press.]]
[28]
S. R. Valluri, S. Vadapalli, and K. Karlapalem. View relevance driven materialized view selection in data warehousing environment. In Proc. CRPITS 2002, pages 187--196, Darlinghurst, Australia, 2002. Australian Computer Society.]]
[29]
J. X. Yu, X. Yao, C.-H. Choi, and G. Gou. Materialized view selection as constrained evolutionary optimization. In IEEE Transactions on Systems, Man and Cybernetics, Part C, volume 33, pages 458--467. IEEE Computer Society, Nov. 2003.]]
[30]
C. Zhang, X. Yao, and J. Yang. An evolutionary approach to materialized views selection in a datawarehouse environment. IEEE Transactions on Systems, Man and Cybernetics, Part C, 31(3):282--294, August 2001.]]

Cited By

View all
  • (2022)HMABProceedings of the VLDB Endowment10.14778/3565816.356582416:2(216-229)Online publication date: 1-Oct-2022
  • (2021)Static and incremental dynamic approaches for multi-objective bitmap join indexes selection in data warehousesThe Journal of Supercomputing10.1007/s11227-020-03423-777:4(3933-3958)Online publication date: 1-Apr-2021
  • (2020)Materialized View Selection Using Self-Adaptive Perturbation Operator-Based Particle Swarm OptimizationInternational Journal of Applied Evolutionary Computation10.4018/ijaec.202007010411:3(50-67)Online publication date: Jul-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation
July 2006
2004 pages
ISBN:1595931864
DOI:10.1145/1143997
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. OLAP
  2. data warehousing
  3. genetic algorithms
  4. multiobjective evolutionary optimization
  5. multiobjective optimization
  6. view selection

Qualifiers

  • Article

Conference

GECCO06
Sponsor:
GECCO06: Genetic and Evolutionary Computation Conference
July 8 - 12, 2006
Washington, Seattle, USA

Acceptance Rates

GECCO '06 Paper Acceptance Rate 205 of 446 submissions, 46%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)HMABProceedings of the VLDB Endowment10.14778/3565816.356582416:2(216-229)Online publication date: 1-Oct-2022
  • (2021)Static and incremental dynamic approaches for multi-objective bitmap join indexes selection in data warehousesThe Journal of Supercomputing10.1007/s11227-020-03423-777:4(3933-3958)Online publication date: 1-Apr-2021
  • (2020)Materialized View Selection Using Self-Adaptive Perturbation Operator-Based Particle Swarm OptimizationInternational Journal of Applied Evolutionary Computation10.4018/ijaec.202007010411:3(50-67)Online publication date: Jul-2020
  • (2020)Random Walk Grey Wolf Optimizer Algorithm for Materialized View Selection (RWGWOMVS)Novel Approaches to Information Systems Design10.4018/978-1-7998-2975-1.ch005(101-122)Online publication date: 2020
  • (2020)Multi-objective materialized view selection using MOGAInternational Journal of System Assurance Engineering and Management10.1007/s13198-020-00947-211:S2(220-231)Online publication date: 19-Jan-2020
  • (2019)Handling Constraints Using Penalty Functions in Materialized View SelectionInternational Journal of Natural Computing Research10.4018/IJNCR.20190401018:2(1-17)Online publication date: Apr-2019
  • (2019)Multi-Objective Materialized View Selection Using Improved Strength Pareto Evolutionary AlgorithmInternational Journal of Artificial Intelligence and Machine Learning10.4018/IJAIML.20190701019:2(1-21)Online publication date: 1-Jul-2019
  • (2019)Outer-TuningProceedings of the XV Brazilian Symposium on Information Systems10.1145/3330204.3330270(1-8)Online publication date: 20-May-2019
  • (2018)A novel quantum-inspired evolutionary view selection algorithmSādhanā10.1007/s12046-018-0936-543:10Online publication date: 29-Aug-2018
  • (2018)Materialized View Selection Using Backtracking Search Optimization AlgorithmIntelligent Engineering Informatics10.1007/978-981-10-7566-7_25(241-251)Online publication date: 11-Apr-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media