Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1148109.1148155acmconferencesArticle/Chapter ViewAbstractPublication PagesspaaConference Proceedingsconference-collections
Article

Symmetric network computation

Published: 30 July 2006 Publication History

Abstract

We introduce a simple new model of distributed computation -- finite-state symmetric graph automata (FSSGA) -- which captures the qualitative properties common to fault-tolerant distributed algorithms. Roughly speaking, the computation evolves homogeneously in the entire network, with each node acting symmetrically and with limited resources. As a building block, we demonstrate the equivalence of two automaton models for computing symmetric multi-input functions. We give FSSGA algorithms for several well-known problems.

References

[1]
D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks of passively mobile finite-state sensors. In Proc. 23rd Symp. Principles of Distributed Computing, pages 290--299, 2004.
[2]
B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804--823, 1985.
[3]
B. Awerbuch and R. Ostrovsky. Memory-efficient and self-stabilizing network reset. In Proc. 13th Symp. Principles of Distributed Computing, pages 254--263, 1994.
[4]
S. R. Buss, C. H. Papadimitriou, and J. N. Tsitsiklis. On the predictability of coupled automata: An allegory about chaos. In Proc. 31st Symp. Foundations of Computer Science, pages 788--293, 1990.
[5]
S. Dolev. Self-Stabilization. MIT Press, 2000.
[6]
P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182--209, 1985.
[7]
M. Gardner. The fantastic combinations of John Conway's new solitaire game "life". Scientific American, 223:120--123, 1970.
[8]
D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular configurations of processors. Commun. ACM, 23(11):627--628, 1980.
[9]
G. Itkis and L. Levin. Fast and lean self-stabilizing asynchronous protocols. In Proc. 35th Symp. Foundations of Computer Science, pages 226--239, 1994.
[10]
D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In Proc. 36th Symp. Theory of Computing, pages 561--568, 2004.
[11]
N. Lynch. A hundred impossibility proofs for distributed computing. In Proc. 8th Symp. Principles of Distributed Computing, pages 1--28, 1989.
[12]
B. Martin. A geometrical hierarchy on graphs via cellular automata. Fundamenta Informaticae, 52(1-3):157--181, 2002.
[13]
A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing symmetry breaking in constant space. In Proc. 24th Symp. Theory of Computing, pages 667--678, 1992.
[14]
D. L. Milgram. Web automata. Information and Control, 29(2):162--184, 1975.
[15]
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 2000.
[16]
S. Nath, P. B. Gibbons, Z. Anderson, and S. Seshan. Synopsis diffusion for robust aggregation in sensor networks. In Proc. 2nd Conf. Embedded Networked Sensor Systems, pages 250--262, 2004.
[17]
E. Rémila. Recognition of graphs by automata. Theoret. Comput. Sci., 136(2):291--332, 1994.
[18]
A. Rosenfeld. Networks of automata: some applications. IEEE Trans. Systems, Man, and Cybernetics, 5:380--383, 1975.
[19]
A. Rosenfeld and D. L. Milgram. Web automata and web grammars. Machine Intelligence, 7:307--324, 1972.
[20]
D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput., 6(5):563--581, 1977.
[21]
P. Rosenstiehl, J. Fiksel, and A. Holliger. Intelligent graphs: Networks of finite automata capable of solving graph problems. In R. C. Read, editor, Graph Theory and Computing, pages 219--265. Academic Press, 1972.
[22]
H. Szwerinkski. Time-optimal solution of the firing-squad synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoret. Comput. Sci., 19:305--320, 1982.
[23]
G. Tel. Introduction to Distibuted Algorithms. Cambridge University Press, 2000.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SPAA '06: Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures
July 2006
344 pages
ISBN:1595934529
DOI:10.1145/1148109
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. agents
  2. election
  3. fault-tolerance
  4. symmetry

Qualifiers

  • Article

Conference

SPAA06
SPAA06: 18th ACM Symposium on Parallelism in Algorithms and Architectures 2006
July 30 - August 2, 2006
Massachusetts, Cambridge, USA

Acceptance Rates

Overall Acceptance Rate 447 of 1,461 submissions, 31%

Upcoming Conference

SPAA '25
37th ACM Symposium on Parallelism in Algorithms and Architectures
July 28 - August 1, 2025
Portland , OR , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media