Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Cooperation through self-assembly in multi-robot systems

Published: 01 December 2006 Publication History

Abstract

This article illustrates the methods and results of two sets of experiments in which a group of mobile robots, called s-bots, are required to physically connect to each other, that is, to self-assemble, to cope with environmental conditions that prevent them from carrying out their task individually. The first set of experiments is a pioneering study on the utility of self-assembling robots to address relatively complex scenarios, such as cooperative object transport. The results of our work suggest that the s-bots possess hardware characteristics which facilitate the design of control mechanisms for autonomous self-assembly. The control architecture we developed proved particularly successful in guiding the robots engaged in the cooperative transport task. However, the results also showed that some features of the robots' controllers had a disruptive effect on their performances. The second set of experiments is an attempt to enhance the adaptiveness of our multi-robot system. In particular, we aim to synthesise an integrated (i.e., not-modular) decision-making mechanism which allows the s-bot to autonomously decide whether or not environmental contingencies require self-assembly. The results show that it is possible to synthesize, by using evolutionary computation techniques, artificial neural networks that integrate both the mechanisms for sensory-motor coordination and for decision making required by the robots in the context of self-assembly.

References

[1]
Baldassarre, G., Nolfi, S., and Parisi, D. 2003. Evolution of collective behavior in a team of physically linked robots. In Proceedings of the Second European Workshop on Evolutionary Robotics. R. Gunther, A. Guillot, and J.-A. Meyer, Eds. Springer Verlag, Berlin, Germany, 581--592.
[2]
Baldassarre, G., Parisi, D., and Nolfi, S. 2004. Coordination and behavior integration in cooperating simulated robots. In From Animals to Animats S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam, and J.-A. Meyer, Eds. MIT Press, Cambridge, MA, 385--394.
[3]
Beer, R. D. 1995. A dynamical systems perspective on agent-environment interaction. Artificial Intell. 72, 173--215.
[4]
Bererton, C. and Khosla, P. 2000. Towards a team of robots with repair capabilities: A visual docking systems. In Proceedings of the 7th International Symposium on Experimental Robotics, (ISER). Lecture Notes in Control and Information Sciences, vol. 271. Springer, Berlin, Germany, 333--342.
[5]
Bererton, C. and Khosla, P. 2001. Towards a team of robots with reconfiguration and repair capabilities. In Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2923--2928.
[6]
Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., and Nguyen, T. 2005. Programmable parts: A demonstration of the grammatical approach to self-organization. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE Computer Society Press, Los Alamitos, CA, 2644--2651.
[7]
Brown, H., Weghe, J. V., Bererton, C., and Khosla, P. 2002. Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7, 452--461.
[8]
Castano, A., Shen, W.-M., and Will, P. 2000. CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots 8, 3, 309--324.
[9]
Damoto, R., Kawakami, A., and Hirose, S. 2001. Study of super-mechano colony: concept and basic experimental set-up. Advanced Robotics 15, 4, 391--408.
[10]
Dorigo, M., Trianni, V., Sahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M. 2004. Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17, 2--3, 223--245.
[11]
Fukuda, T. and Nakagawa, S. 1987. A dynamically reconfigurable robotic system (concept of a system and optimal configurations). In Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation. IEEE Computer Society Press, Los Alamitos, CA, 588--595.
[12]
Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M. 1988. Self organizing robots based on cell structures---CEBOT. In Proceedings of the IEEE International Workshop on Intelligent Robots. IEEE Computer Society Press, Los Alamitos, CA, 145--150.
[13]
Fukuda, T. and Ueyama, T. 1994. Cellular Robotics and Micro Robotic Systems. World Scientific Publishing, London, UK.
[14]
Fukuda, T., Ueyama, T., and Kawauchi, Y. 1990. Self-organization in cellular robotic system (CEBOT) for space application with knowledge allocation method. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Kobe, Japan, 101--104.
[15]
Fukuda, T., Ueyama, T., and Sekiyama, K. 1995. Artificial Intelligence in Industrial Decision Making, Conrol and Automation. (Chapter 8). Kluwer Academic Publishers, Dordrecht, The Netherlands.
[16]
Griffith, S., Goldwater, D., and Jacobson, J. M. 2005. Self-replication from random parts. Nature 437, 7059, 636.
[17]
Griffith, S. T. 2004. Growing machines. Ph.D. thesis, MIT, Cambridge, MA.
[18]
Groß, R., Bonani, M., Mondada, F., and Dorigo, M. 2006. Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22, 5.
[19]
Groß, R., Bonani, M., Mondada, F., and Dorigo, M. 2006. Autonomous self-assembly in a swarm-bot. In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE'05), K. Murase, K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, Eds. Springer, Berlin, Germany, 314--322.
[20]
Groß, R. and Dorigo, M. 2004. Group transport of an object to a target that only some group members may sense. In Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. T. A. Kabán, and H.-P. Schwefel, Eds. Lecture Notes in Computer Science, vol. 3242. Springer Verlag, Berlin, Germany, 852--861.
[21]
Harvey, I., Husband, P., Thompson, A., and Jakobi, N. 1997. Evolutionary Robotics: The Sussex approach. Robotics Auton. Syst. 20, 205--224.
[22]
Hirose, S. 2001. Super mechano-system: New perspectives for versatile robotic systems. In Proceedings of the 7th International Symposium on Experimental Robotics, (ISER), D. Rus and S. Singh, Eds. Lecture Notes in Control and Information Sciences, vol. 271. Springer, Berlin, Germany, 249--258.
[23]
Hirose, S., Damoto, R., and Kawakami, A. 2000. Study of super-mechano-colony (concept and basic experimental setup). In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 1664--1669.
[24]
Hirose, S., Shirasu, T., and Fukushima, E. 1996. Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics Auton. Syst. 17, 107--118.
[25]
Jørgensen, M. W., Østergaard, E. H., and Lund, H. H. 2004. Modular ATRON: Modules for a self-reconfigurable robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 2. IEEE Computer Society Press, Los Alamitos, CA, 2068--2073.
[26]
Kube, C. R. and Bonabeau, E. 2000. Cooperative transport by ants and robots. Robotics Auton. Syst. 30, 1--2, 85--101.
[27]
Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT, Cambridge, MA.
[28]
Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneubourg, J.-L., and Dorigo, M. 2005. The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics Automation Mag. 12, 2, 21--28.
[29]
Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., and Dorigo, M. 2004. SWARM-BOT: A new distributed robotic concept. Auton. Robots 17, 2--3, 193--221.
[30]
Motomura, K., Kawakami, A., and Hirose, S. 2005. Development of arm equipped single wheel rover: Effective arm-posture-based steering method. Auton. Robots 18, 2, 215--229.
[31]
Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S. 2002. M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7, 4, 431--441.
[32]
Nolfi, S. and Floreano, D. 2000. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge, MA.
[33]
O'Grady, R., Groß, R., and Dorigo, M. 2005. Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Proceedings of the 8th European Conference on Artificial Life (ECAL05), M. Capcarrere, A. Freitas, P. Bentley, C. Johnson, and J. Timmis, Eds. Lecture Notes in Artificial Intelligence (LNAI), vol. 3630. Springer-Verlag, Berlin, Germany, 272--281.
[34]
Rubenstein, M., Payne, K., Will, P., and Shen, W.-M. 2004. Docking among indepenpent and autonomous CONRO self-reconfigurable robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'04). Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2877--2882.
[35]
Rus, D. and Vona, M. 2001. Crystalline robots: Self-reconfiguration with compressible unit modules. Auton. Robots 10, 1, 107--124.
[36]
Trianni, V., Nolfi, S., and Dorigo, M. 2006. Cooperative hole avoidance in a swarm-bot. Robotics Auton. Syst. 54, 2, 97--103.
[37]
Trianni, V., Tuci, E., and Dorigo, M. 2004. Evolving functional self-assembling in a swarm of auton. robots. In Proceedings of the 8th International Conference on Simulation of Adaptive Behavior (SAB'04). S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam, and J.-A. Meyer, Eds. MIT Press, Cambridge, MA, 405--414.
[38]
White, P. J., Kopanski, K., and Lipson, H. 2004. Stochastic self-reconfigurable cellular robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'04). Vol. 3. IEEE Computer Society Press, Los Alamitos, CA, 2888--2893.
[39]
White, P. J., Zykov, V., Bongard, J., and Lipson, H. 2005. Three dimensional stochastic reconfiguration of modular robots. In Proceedings of the Robotics: Science and Systems Conference. MIT, Cambridge, MA, 161--168.
[40]
Yim, M., Duff, D. G., and Roufas, K. D. 2000. PolyBot: a modular reconfigurable robot. In Proceedings of the IEEE International Conference on Robotics and Automation. Vol. 1. IEEE Computer Society Press, Los Alamitos, CA, 514--520.
[41]
Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., and Homans, S. 2003. Modular reconfigurable robots in space applications. Auton. Robots 14, 2-3, 225--237.
[42]
Yim, M., Zhang, Y., and Duff, D. 2002. Modular robots. IEEE Spectrum 39, 2, 30--34.
[43]
Yim, M., Zhang, Y., Roufas, K., Duff, D., and Eldershaw, C. 2002. Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7, 4, 442--451.
[44]
Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. 2005. Self-reproducing machines. Nature 435, 7039, 163.

Cited By

View all
  • (2024)U-SMART: unified swarm management and resource tracking framework for unoccupied aerial vehiclesDrone Systems and Applications10.1139/dsa-2024-000712(1-26)Online publication date: 1-Jan-2024
  • (2024)A Genre of Cognitive Evolutions Through Artificial Superintelligence and Robotics TechnologyBrain-like Super Intelligence from Bio-electromagnetism10.1007/978-981-97-0232-9_4(153-187)Online publication date: 8-Mar-2024
  • (2023)Learning in Cooperative Multiagent Systems Using Cognitive and Machine ModelsACM Transactions on Autonomous and Adaptive Systems10.1145/361783518:4(1-22)Online publication date: 14-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems  Volume 1, Issue 2
December 2006
147 pages
ISSN:1556-4665
EISSN:1556-4703
DOI:10.1145/1186778
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2006
Published in TAAS Volume 1, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Swarm robotics
  2. artificial neural networks
  3. evolutionary algorithms
  4. evolutionary robotics
  5. self-assembly
  6. swarm intelligence

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)59
  • Downloads (Last 6 weeks)7
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)U-SMART: unified swarm management and resource tracking framework for unoccupied aerial vehiclesDrone Systems and Applications10.1139/dsa-2024-000712(1-26)Online publication date: 1-Jan-2024
  • (2024)A Genre of Cognitive Evolutions Through Artificial Superintelligence and Robotics TechnologyBrain-like Super Intelligence from Bio-electromagnetism10.1007/978-981-97-0232-9_4(153-187)Online publication date: 8-Mar-2024
  • (2023)Learning in Cooperative Multiagent Systems Using Cognitive and Machine ModelsACM Transactions on Autonomous and Adaptive Systems10.1145/361783518:4(1-22)Online publication date: 14-Oct-2023
  • (2023)Selection for short-term empowerment accelerates the evolution of homeostatic neural cellular automataProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590469(147-155)Online publication date: 15-Jul-2023
  • (2023)The internet of modular robotic things: Issues, limitations, challenges, & solutionsInternet of Things10.1016/j.iot.2023.10088623(100886)Online publication date: Oct-2023
  • (2022)Swarm Crawler Robots Using Lévy Flight for Targets Exploration in Large EnvironmentsRobotics10.3390/robotics1104007611:4(76)Online publication date: 22-Jul-2022
  • (2022)Insect-inspired AI for autonomous robotsScience Robotics10.1126/scirobotics.abl63347:67Online publication date: 15-Jun-2022
  • (2021)Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasksScience Robotics10.1126/scirobotics.abf16286:56Online publication date: 21-Jul-2021
  • (2020)MagicHand: Context-Aware Dexterous Grasping Using an Anthropomorphic Robotic Hand2020 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA40945.2020.9196538(9895-9901)Online publication date: May-2020
  • (2020)Self-improving system integration: Mastering continuous changeFuture Generation Computer Systems10.1016/j.future.2020.11.019Online publication date: Nov-2020
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media