Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The arithmetical complexity of dimension and randomness

Published: 01 April 2007 Publication History

Abstract

Constructive dimension and constructive strong dimension are effectivizations of the Hausdorff and packing dimensions, respectively. Each infinite binary sequence A is assigned a dimension dim(A) ∈ [0,1] and a strong dimension Dim(A) ∈ [0,1].
Let DIMα and DIMαstr be the classes of all sequences of dimension α and of strong dimension α, respectively. We show that DIM0 is properly Π02, and that for all Δ02-computable α ∈ (0, 1], DIMα is properly Π03.
To classify the strong dimension classes, we use a more powerful effective Borel hierarchy where a coenumerable predicate is used rather than an enumerable predicate in the definition of the Σ01 level. For all Δ02-computable α ∈ [0, 1), we show that DIMαstr is properly in the Π03 level of this hierarchy. We show that DIM1str is properly in the Π02 level of this hierarchy.
We also prove that the class of Schnorr random sequences and the class of computably random sequences are properly Π03.

References

[1]
Ambos-Spies, K., Merkle, W., Reimann, J., and Stephan, F. 2001. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity. 210--217.
[2]
Athreya, K. B., Hitchcock, J. M., Lutz, J. H., and Mayordomo, E. 2004. Effective strong dimension in algorithmic information and computational complexity. In Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Science. Springer Verlag. 632--643. To appear in SIAM J. Comput.
[3]
Dai, J. J., Lathrop, J. I., Lutz, J. H., and Mayordomo, E. 2004. Finite-State dimension. Theor. Comput. Sci. 310, 1 3, 1--33.
[4]
Fenner, S. A. 2002. Gales and supergales are equivalent for defining constructive Hausdorff dimension. Tech. Rep. cs.CC/0208044, Computing Research Repository.
[5]
Fortnow, L. and Lutz, J. H. 2005. Prediction and dimension. J. Comput. Syst. Sci. 70, 4, 570--589.
[6]
Hausdorff, F. 1919. Dimension und äußeres Maß. Mathematische Annalen 79, 157--179.
[7]
Hitchcock, J. M. 2002. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theor. Comput. Sci. 289, 1, 861--869.
[8]
Hitchcock, J. M. 2003a. Fractal dimension and logarithmic loss unpredictability. Theor. Comput. Sci. 304, 1 3, 431--441.
[9]
Hitchcock, J. M. 2003b. Gales suffice for constructive dimension. Inf. Process. Lett. 86, 1, 9--12.
[10]
Jockusch, C. G. 1980. Degrees of generic sets. In Recursion Theory: Its Generalizations and Applications. London Mathematical Society Lecture Notes Series, vol. 45. Cambridge University Press, New York. 110--139.
[11]
Kechris, A. S. 1994. Classical Descriptive Set Theory. Springer Verlag.
[12]
Ki, H. and Linton, T. 1994. Normal numbers and subsets of N with given densities. Fundamenta Mathematicae 144, 163--179.
[13]
Kreisel, G. 1950. Note on arithmetical models for consistent formulae of the predicate calculus. Fundam. Mathematicae 37, 265--285.
[14]
Li, M. and Vitányi, P. M. B. 1997. An Introduction to Kolmogorov Complexity and its Applications, 2nd ed Springer Verlag, Berlin.
[15]
Lutz, J. H. 2003a. Dimension in complexity classes. SIAM J. Comput. 32, 5, 1236--1259.
[16]
Lutz, J. H. 2003b. The dimensions of individual strings and sequences. Inf. Comput. 187, 1, 49--79.
[17]
Martin-Löf, P. 1966. The definition of random sequences. Inf. Control 9, 602--619.
[18]
Mayordomo, E. 2002. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84, 1, 1--3.
[19]
Moschovakis, Y. N. 1980. Descriptive Set Theory. North-Holland, Amsterdam.
[20]
Odifreddi, P. 1989. Classical recursion theory. In Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland.
[21]
Rogers, Jr, H. 1967. Theory of Recursive Functions and Effective Computability. McGraw - Hill, New York.
[22]
Schnorr, C. P. 1971. Zufälligkeit und wahrscheinlichkeit. Lecture Not. Math. 218.
[23]
Schnorr, C. P. 1977. A survey of the theory of random sequences. In Basic Problems in Methodology and Linguistics, R. E. Butts and J. Hintikka, Eds. D. Reidel. 193--211.
[24]
Staiger, L. 1993. Recursive automata on infinite words. In Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer Science. Springer Verlag. 629--639.
[25]
Staiger, L. 2000. On the power of reading the whole infinite input tape. In Finite Versus Infinite: Contributions to an Eternal Dilemma, C. S. Calude and G. Paun, Eds. Springer Verlag. 335--348.
[26]
Staiger, L. 2005. Constructive dimension equals Kolmogorov complexity. Inf. Process. Lett. 93, 3, 149--153.
[27]
Terwijn, S. A. 2004. Complexity and randomness. Rendiconti del Seminario Matematico di Torino 62, 1, 1--38.
[28]
van Lambalgen, M. 1987. Random sequences. Ph.D. thesis, Department of Mathematics, University of Amsterdam.
[29]
Ville, J. 1939. Étude Critique de la Notion de Collectif. Gauthier Villars, Paris.
[30]
Wadge, W. W. 1972. Degrees of complexity of subsets of the Baire space. Not. Amer. Math. Soc. 19, 714--715.
[31]
Wadge, W. W. 1983. Reducibility and determinateness on the Baire space. Ph.D. thesis, U. C. Berkeley.
[32]
Wang, Y. 1996. Randomness and complexity. Ph.D. thesis, Department of Mathematics, University of Heidelberg.

Cited By

View all

Index Terms

  1. The arithmetical complexity of dimension and randomness

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Computational Logic
      ACM Transactions on Computational Logic  Volume 8, Issue 2
      April 2007
      196 pages
      ISSN:1529-3785
      EISSN:1557-945X
      DOI:10.1145/1227839
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 April 2007
      Published in TOCL Volume 8, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Arithmetical hierarchy
      2. Schnorr randomness
      3. Wadge reductions
      4. computable randomness
      5. constructive dimension

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Effective aspects of Hausdorff and Fourier dimensionComputability10.3233/COM-21037211:3-4(299-333)Online publication date: 21-Dec-2022
      • (2012)Arithmetic complexity via effective names for random sequencesACM Transactions on Computational Logic10.1145/2287718.228772413:3(1-18)Online publication date: 28-Aug-2012
      • (2008)Connectivity Properties of Dimension Level SetsElectronic Notes in Theoretical Computer Science (ENTCS)10.1016/j.entcs.2008.03.022202(295-304)Online publication date: 1-Mar-2008
      • (2008)Connectivity properties of dimension level setsMathematical Logic Quarterly10.1002/malq.20071006054:5(483-491)Online publication date: 27-Aug-2008

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media