Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Small depth quantum circuits

Published: 01 June 2007 Publication History
  • Get Citation Alerts
  • Abstract

    Small depth quantum circuits have proved to be unexpectedly powerful in comparison to their classical counterparts. We survey some of the recent work on this and present some open problems.

    References

    [1]
    L. Adleman, J. DeMarrais, and M. Huang. "Quantum computability". SIAM Journal on Computing, 26:1524--1540, 1997.
    [2]
    A. Barenco, C. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weifurter. "Elementary gates for quantum computation". Phys. Rev. A, 52:3457--3467, 1995.
    [3]
    J. I. Cirac and P. Zoller. "Quantum computers with cold trapped ions". Phys. Rev. Lett., 74:4091--4094, 1995.
    [4]
    R. Cleve and J. Watrous. "Fast parallel circuits for the quantum Fourier transform". Proc. of 41st IEEE FOCS, pages 526--536, 2000.
    [5]
    V. Coffman, J. Kundu, and W. K. Wootters. "Distributed Entanglement". Phys. Rev. A, 61, 052306, 2000.
    [6]
    D. Coppersmith. "An approximate Fourier transform useful in quantum factoring". IBM technical report RC19642, quant-ph/0201067, 1994.
    [7]
    S. Fenner. "A physics-free introduction to the quantum computation model", Computational Complexity Column. Bulletin of EATCS, 79:69--85, 2003.
    [8]
    M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang. "Quantum lower bounds for fanout". Quantum Information and Computation, 6(1):046--057, 2006.
    [9]
    S. Fenner, F. Green, S. Homer, and R. Pruim. "Quantum NP is hard for PH". Proceedings of 6th Italian Conference on theoretical Computer Science, World Scientific, Singapore, pages 241--252, 1998.
    [10]
    L. Fortnow and J. Rogers. "Complexity Limitations on Quantum Computation". Proceedings of 13th IEEE Conference on Computational Complexity, pages 202--209, 1998.
    [11]
    M. Furst, J. B. Saxe, and M. Sipser. "Parity, circuits, and the polynomial-time hierarchy". Math. Syst. Theory, 17:13--27, 1984.
    [12]
    N. Gershenfeld and I. Chuang. "Bulk spin resonance quantum computation". Science, 275:350--356, 1997.
    [13]
    F. Green, S. Homer, C. Moore and C. Pollett. "Counting, Fanout, and the Complexity of Quantum ACC". Quantum Information and Computation, 2(1):35--65, 2002.
    [14]
    P. Høyer and R. Špalek. "Quantum fan-out is powerful". Theory of Computing, 1:81--103, 2005.
    [15]
    Cristopher Moore. "Quantum Circuits: Fanout, Parity, and Counting". In Los Alamos Preprint archives quant-ph/9903046, 1999.
    [16]
    Cristopher Moore and Martin Nilsson. "Parallel Quantum Computation and Quantum Codes". In Los Alamos Preprint archives quant-ph/9808027, 1998.
    [17]
    M. A. Nielsen and I. L. Chuang. "Quantum computation and quantum information". Cambridge University Press, 2000.
    [18]
    N. Nisan. "CREW PRAMs and decision trees". SIAM J. Computing, 20:999--1007, 1991.
    [19]
    H. Nishimura and M. Ozawa. "Computational complexity of uniform quantum circuit families and quantum Turing machines". Theoretical Computer Science, 1--2(276):147--181, 2002.
    [20]
    S. Parker and M. B. Plenio. "Efficient factorization with a single pure qubit and logN Mixed qubits". Physics Review Letters, 85(14):3049--3052, Oct 2000.
    [21]
    A. A. Razborov. "Lower bounds for the size of circuits of bounded depth with basis {&, ⊕⊕}". Math. Notes Acad. Sci. USSR, 41(4):333--338, 1987.
    [22]
    P. W. Shor. "Polynomial-time algorithms for prime number factorization and discrete logarithms on a quantum computer". SIAM J. Comp., 26:1484--1509, 1997.
    [23]
    K.-Y. Siu, J. Bruck, T. Kailath and T. Hofmeister "Depth efficient neural networks for division and related problems". IEEE Transactions on Information Theory, 39(3):946--956, 1993.
    [24]
    R. Smolensky. "Algebraic methods in the theory of lower bounds for Boolean circuit complexity". Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 77--82, 1987.
    [25]
    R. Špalek. "Quantum Circuits with Unbounded Fan-out". Master's Thesis, Faculty of Sciences, Vrije Universiteit, Amsterdam, 2002.
    [26]
    H. Vollmer. "Introduction to Circuit Complexity". Springer-Verlag, 1999.
    [27]
    A. C.-C. Yao. "Quantum circuit complexity". In Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, pages 352--361, 1993.

    Cited By

    View all
    • (2024)Parallel Quantum Algorithm for Hamiltonian SimulationQuantum10.22331/q-2024-01-15-12288(1228)Online publication date: 15-Jan-2024
    • (2024)On the Pauli Spectrum of QAC0Proceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649662(1498-1506)Online publication date: 10-Jun-2024
    • (2021)Clifford+T-based implementation of fault-tolerant quantum circuits over XOR-Majority GraphMicroelectronics Journal10.1016/j.mejo.2021.105212(105212)Online publication date: Aug-2021
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGACT News
    ACM SIGACT News  Volume 38, Issue 2
    June 2007
    79 pages
    ISSN:0163-5700
    DOI:10.1145/1272729
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 June 2007
    Published in SIGACT Volume 38, Issue 2

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)3

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Parallel Quantum Algorithm for Hamiltonian SimulationQuantum10.22331/q-2024-01-15-12288(1228)Online publication date: 15-Jan-2024
    • (2024)On the Pauli Spectrum of QAC0Proceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649662(1498-1506)Online publication date: 10-Jun-2024
    • (2021)Clifford+T-based implementation of fault-tolerant quantum circuits over XOR-Majority GraphMicroelectronics Journal10.1016/j.mejo.2021.105212(105212)Online publication date: Aug-2021
    • (2020)Power of uninitialized qubits in shallow quantum circuitsTheoretical Computer Science10.1016/j.tcs.2020.11.039Online publication date: Nov-2020
    • (2019)Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuitsProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316404(515-526)Online publication date: 23-Jun-2019
    • (2018)Amplitude Amplification for Operator Identification and Randomized ClassesComputing and Combinatorics10.1007/978-3-319-94776-1_48(579-591)Online publication date: 2-Jul-2018
    • (2014)Quantum Computational ComplexityEncyclopedia of Complexity and Systems Science10.1007/978-3-642-27737-5_428-3(1-40)Online publication date: 6-May-2014
    • (2012)Quantum Computational ComplexityComputational Complexity10.1007/978-1-4614-1800-9_147(2361-2387)Online publication date: 2012
    • (2011)A lower bound method for quantum circuitsInformation Processing Letters10.1016/j.ipl.2011.05.002111:15(723-726)Online publication date: 1-Aug-2011
    • (2010)Efficient universal quantum circuitsQuantum Information & Computation10.5555/2011438.201144010:1(16-28)Online publication date: 1-Jan-2010
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media