Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1277548.1277585acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Fast arithmetic for triangular sets: from theory to practice

Published: 29 July 2007 Publication History

Abstract

We study arithmetic operations for triangular families of polynomials, concentrating on multiplication in dimension zero. By a suitable extension of fast univariate Euclidean division, we obtain theoretical and practical improvements over a direct recursive approach; for a family of special cases, we reach quasi-linear complexity. The main outcome we have in mind is the acceleration of higher-level algorithms, by interfacing our low-level implementation with languages such as AXIOM or Maple We show the potential for huge speed-ups, by comparing two AXIOM implementations of van Hoeij and Monagan's modular GCD algorithm.

References

[1]
D. Bini. Relations between exact and approximate bilinear algorithms. Applications.Calcolo, 17(1):87--97, 1980.
[2]
D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n 2.7799) complexity for n x n approximate matrix multiplication. Inf. Proc. Lett., 8(5):234--235, 1979.
[3]
D. Bini, G. Lotti, and F. Romani. Approximate solutions for the bilinear form computational problem. SIAM J. Comput., 9(4):692--697, 1980.
[4]
W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235--265, 1997.
[5]
D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28(7):693--701, 1991.
[6]
S. Cook. On the minimum computation time of functions. PhD thesis, Harvard University, 1966.
[7]
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill, 2002.
[8]
X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for triangular decompositions. In ISSAC'05, pages 108--115. ACM, 2005.
[9]
A. Filatei, X. Li, M. Moreno Maza, and É. Schost. Implementation techniques for fast polynomial arithmetic in a high-level programming environment. In ISSAC'06, pages 93--100. ACM, 2006.
[10]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.
[11]
J.R. Johnson, W. Krandick, K. Lynch, K.G. Richardson, and A.D. Ruslanov. High-performance implementations of the Descartes method. In ISSAC'06, pages 154--161. ACM, 2006.
[12]
J.R. Johnson, W. Krandick, and A.D. Ruslanov. Architecture-aware classical taylor shift by 1. In ISSAC'05, pages 200--207. ACM, 2005.
[13]
H.T. Kung. On computing reciprocals of power series. Numerische Mathematik, 22:341--348, 1974.
[14]
L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods in algebraic geometry), volume94 of Progr. Math., pages 235--248. Birkhäuser, 1991.
[15]
F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S. Kotsireas, editor, Maple Conference 2005, pages 355--368, 2005.
[16]
X. Li. Low-level techniques for Montgomery multiplication, 2007. http://www.csd.uwo.ca/People/gradstudents/xli96/
[17]
X. Li and M. Moreno Maza. Efficient implementation of polynomial arithmetic in a multiple-level programming environment. In ICMS'06, pages 12--23. Springer, 2006.
[18]
M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields presented with multiple extensions. In ISSAC'02, pages 109--116. ACM, 2002.
[19]
P.L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519--521, 1985.
[20]
M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/~moreno/
[21]
V.Y. Pan. Simple multivariate polynomial multiplication. J. Symbolic Comput., 18(3):183--186, 1994.
[22]
M. Püschel, J.M.F. Moura, J. Johnson, D. Padua, M. Veloso, B.W. Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proc 'IEEE, 93(2):232--275, 2005.
[23]
A. Schönhage. Schnelle Multiplikation von Polynomenüber Körpern der Charakteristik 2. Acta Informatica, 7:395--398, 1977.
[24]
A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281--292, 1971.
[25]
É. Schost. Multivariate power series multiplication. In ISSAC'05, pages 293--300. ACM, 2005.
[26]
V. Shoup. A new polynomial factorization algorithm and its implementation. J. Symb. Comp., 20(4):363--397, 1995.
[27]
M. Sieveking. An algorithm for division of powerseries. Computing, 10:153--156, 1972.

Cited By

View all
  • (2022)Balanced Dense Multivariate Multiplication: The General Case2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)10.1109/SYNASC57785.2022.00015(35-42)Online publication date: Sep-2022
  • (2015)Improving Complexity Bounds for the Computation of Puiseux Series over Finite FieldsProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756650(299-306)Online publication date: 24-Jun-2015
  • (2015)Algorithms for Finite Field ArithmeticProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756637(7-12)Online publication date: 24-Jun-2015
  • Show More Cited By

Index Terms

  1. Fast arithmetic for triangular sets: from theory to practice

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
    July 2007
    406 pages
    ISBN:9781595937438
    DOI:10.1145/1277548
    • General Chair:
    • Dongming Wang
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 July 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. high-performance
    2. multiplication
    3. triangular set

    Qualifiers

    • Article

    Conference

    ISSAC07
    Sponsor:
    ISSAC07: International Symposium on Symbolic and Algebraic Computation
    July 29 - August 1, 2007
    Ontario, Waterloo, Canada

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Balanced Dense Multivariate Multiplication: The General Case2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)10.1109/SYNASC57785.2022.00015(35-42)Online publication date: Sep-2022
    • (2015)Improving Complexity Bounds for the Computation of Puiseux Series over Finite FieldsProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756650(299-306)Online publication date: 24-Jun-2015
    • (2015)Algorithms for Finite Field ArithmeticProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756637(7-12)Online publication date: 24-Jun-2015
    • (2014)Multiplicity-preserving triangular set decomposition of two polynomialsJournal of Systems Science and Complexity10.1007/s11424-014-2017-027:6(1320-1344)Online publication date: 5-Apr-2014
    • (2013)Automatic Parallel Library Generation for General-Size Modular FFT AlgorithmsProceedings of the 15th International Workshop on Computer Algebra in Scientific Computing - Volume 813610.1007/978-3-319-02297-0_21(243-256)Online publication date: 9-Sep-2013
    • (2012)Algorithms for computing triangular decomposition of polynomial systemsJournal of Symbolic Computation10.1016/j.jsc.2011.12.02347:6(610-642)Online publication date: 1-Jun-2012
    • (2011)The modpn libraryJournal of Symbolic Computation10.1016/j.jsc.2010.08.01646:7(841-858)Online publication date: 1-Jul-2011
    • (2011)Complexity bounds for the rational Newton-Puiseux algorithm over finite fieldsApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-011-0144-622:3(187-217)Online publication date: 1-May-2011
    • (2010)Balanced dense polynomial multiplication on multi-coresACM Communications in Computer Algebra10.1145/1823931.182394243:3/4(85-87)Online publication date: 24-Jun-2010
    • (2009)Computations modulo regular chainsProceedings of the 2009 international symposium on Symbolic and algebraic computation10.1145/1576702.1576736(239-246)Online publication date: 28-Jul-2009
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media