Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Optimal parallel selection

Published: 01 November 2007 Publication History

Abstract

We present an optimal parallel selection algorithm on the EREW PRAM. This algorithm runs in O(log n) time with n/log n processors. This complexity matches the known lower bound for parallel selection on the EREW PRAM model. We therefore close this problem which has been open for more than a decade.

References

[1]
Ajtai, M. 1994. Recursive construction for 3-regular expanders. Combinatorica 14, 4, 379--416.
[2]
Ajtai, M., Komlós, J., Steiger, W. L., and Szemerédi, E. 1989. Optimal parallel selection has complexity o(log log n). J. Comput. Syst. Sci. 38, 125--133.
[3]
Azar, Y., and Pippenger, N. 1990. Parallel selection. Discrete Appl. Math. 27, 45--48.
[4]
Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan, R. E. 1973. Time bounds for selection. J. Comput. Syst. Sci. 7, 448--461.
[5]
Chaudhuri, S., Hagerup, T., and Raman, R. 1993. Approximate and exact deterministic parallel selection. In Proceedings of the Mathematical Foundations of Computer Science, 352--361.
[6]
Chong, K. W., Han, Y., Igarashi, Y., and Lam, T. W. 1999. Improve parallel computation with fast integer sorting. In Proceedings of the 5th International Conference on Computing and Combinatorics. Lecture Notes in Computer Sciecne, vol. 1627, Springer, 452--461.
[7]
Cole, R. 1988. An optimally efficient selection algorithm. Inf. Proc. Lett. 26, 295--299.
[8]
Cook, S., Dwork, C., and Reischuk, R. 1986. Upper and lower time bounds for parallel random access machines without simultaneous write. SIAM J. Comput. 15, 1, 87--97.
[9]
Dietz, P., and Raman, R. 1999. Small-Rank selection in parallel, with applications to heap construction. J. Alg. 30, 1, 33--51.
[10]
Fürer, M., and Raghavachari, B. 1996. Parallel edge coloring approximation. Parallel Proc. Lett. 6, 321--329.
[11]
Han, Y. 1989. Matching partition a linked list and its optimization. In Proceedings of the 1st Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), 246--253.
[12]
Han, Y. 2003. Optimal parallel selection. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 1--9.
[13]
Jimbo, S., and Maruoka, A. 1987. Expanders obtained from affine transformations. Combinatorica 7, 4, 343--355.
[14]
Magulis, G. A. 1973. Explicit construction of concentrators. Problemy Peredachi Informatsii 9, 4, 71--80.
[15]
Ramnath, S., and Raman, V. 1999. Selecting small ranks in EREW PRAM. Inf. Proc. Lett. 71, 183--186.
[16]
Reischuk, R. 1985. Probabilistic parallel algorithms for sorting and selection. SIAM J. Comput. 14, 396--409.
[17]
Shen, H. 1997. Optimal parallel multiselection on EREW PRAM. Parallel Comput. 23, 1987--1992.
[18]
Snir, M. 1985. On parallel searching. SIAM J. Comput. 14, 3, 688--708.
[19]
Valiant, L. G. 1975. Parallelism in comparison problems. SIAM J. Comput. 4, 348--355.
[20]
Wagner, R. A., and Han, Y. 1986. Parallel algorithms for bucket sorting and the data dependent prefix problem. In Proceedings of the International Conference on Parallel Processing, 924--930.
[21]
Wigderson, A., and Zukerman, D. 1993. Expanders that beats the eigenvalue bound: Explicit constructions and applications. In Proceedings of the Symposium on Theory of Computing, 245--251.

Cited By

View all
  • (2022)Sorting Short Keys in Circuits of Size ${o(n \log n)}$SIAM Journal on Computing10.1137/20M138098351:3(424-466)Online publication date: 5-May-2022
  • (2021)Sorting short keys in circuits of size o(n log n)Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458198(2249-2268)Online publication date: 10-Jan-2021
  • (2014)Scalable and Efficient Parallel SelectionParallel Processing and Applied Mathematics10.1007/978-3-642-55224-3_20(202-213)Online publication date: 6-May-2014

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 3, Issue 4
November 2007
293 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/1290672
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2007
Published in TALG Volume 3, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. EREW PRAM
  2. Parallel algorithms
  3. selection

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Sorting Short Keys in Circuits of Size ${o(n \log n)}$SIAM Journal on Computing10.1137/20M138098351:3(424-466)Online publication date: 5-May-2022
  • (2021)Sorting short keys in circuits of size o(n log n)Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458198(2249-2268)Online publication date: 10-Jan-2021
  • (2014)Scalable and Efficient Parallel SelectionParallel Processing and Applied Mathematics10.1007/978-3-642-55224-3_20(202-213)Online publication date: 6-May-2014

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media