Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

A :20piano movers' '

Published: 01 February 1986 Publication History

Abstract

As has been pointed out [Schwartz & Sharir, 1983b], various problems of motion planning can be expressed as cylindrical algebraic decompositions [Collins, 1975; Arnon et al., 1984]. The purpose of this note is to discuss a particularly simple such problem, and show what actually happens during the decomposition (as far as we could take it). There is no pretence at originality, except perhaps in the conclusions.

References

[1]
Arnon, D. S., Collins, G. E. & McCallum, S., Cylindrical Algebraic Decomposition. SIAM J. Comp. 13(1984) pp. 865--877, 878--889.
[2]
Collins, G. E., Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. Second GI Conf. Automata Theory and Formal Languages, Springer lecture Notes in Computer Science 33, 1975, pp. 134--183.
[3]
Collins, G. E. & Akritas, A. G., Polynomial Real Root Isolation Using Descartes' Rule of Signs. Proc. SYMSAC 76 (ACM, New York), pp. 272--275.
[4]
Collins, G. E. & Loos, R. G. K., Real Zeros of Polynomials. Computing Supplementum 4 (ed. B. Buchberger, G. E. Collins & R. G. K. Loos), Springer-Verlag, Wien-New York, 1982, pp. 83--94.
[5]
Heindel, L. E., Integer Arithmetic Algorithms for Polynomial Real Zero Determination. J. ACM 18(1971) pp. 533--548.
[6]
IBM Corp. LISP/VM Reference Manual, SH20-6477-0, IBM, 1984.
[7]
McCallum, S., An Improved Projection Operation for Cylindrical Algebraic Decomposition. Computer Science Tech. Report 548, University of Wisconsin at Madison, Feb. 1985.
[8]
Martin, W. A., Determining the Equivalence of Algebraic Expressions by Hash Coding. J. ACM 18(1971) pp. 549--558.
[9]
Schwartz, J. T. & Sharir, M., On the "Piano Movers" Problem. I. The Case of a Two-dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers. Comm. Pure Appl. Math. 36(1983) pp. 345--398.
[10]
Schwartz, J. T. & Sharir, M., On the "Piano Movers" Problem. II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds. Advances in Applied Maths. 4(1983) pp. 298--351.

Cited By

View all
  • (2018)Unsolved Problems, 1969–1999The American Mathematical Monthly10.1080/00029890.1999.12005148106:10(959-962)Online publication date: 23-Apr-2018
  • (2014)Using the Distribution of Cells by Dimension in a Cylindrical Algebraic Decomposition2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing10.1109/SYNASC.2014.15(53-60)Online publication date: Sep-2014
  • (2014)Cylindrical Algebraic Sub-DecompositionsMathematics in Computer Science10.1007/s11786-014-0191-z8:2(263-288)Online publication date: 13-Jun-2014
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGSAM Bulletin
ACM SIGSAM Bulletin  Volume 20, Issue 1-2
Feb/May 1986
56 pages
ISSN:0163-5824
DOI:10.1145/12917
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 February 1986
Published in SIGSAM Volume 20, Issue 1-2

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)2
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Unsolved Problems, 1969–1999The American Mathematical Monthly10.1080/00029890.1999.12005148106:10(959-962)Online publication date: 23-Apr-2018
  • (2014)Using the Distribution of Cells by Dimension in a Cylindrical Algebraic Decomposition2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing10.1109/SYNASC.2014.15(53-60)Online publication date: Sep-2014
  • (2014)Cylindrical Algebraic Sub-DecompositionsMathematics in Computer Science10.1007/s11786-014-0191-z8:2(263-288)Online publication date: 13-Jun-2014
  • (2013)A "Piano Movers" Problem ReformulatedProceedings of the 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing10.1109/SYNASC.2013.14(53-60)Online publication date: 23-Sep-2013
  • (2005)The algorithm by schwartz, sharir and collins on the piano mover's problemGeometry and Robotics10.1007/3-540-51683-2_24(49-66)Online publication date: 31-May-2005
  • (2005)Experiments with a projection operator for algebraic decompositionSymbolic and Algebraic Computation10.1007/3-540-51084-2_16(177-182)Online publication date: 27-May-2005
  • (2002)Achieving corporative behavior in heterogeneous agents using hierarchic reinforcement learning-an approach to piano mover's problemIEEE International Conference on Systems, Man and Cybernetics10.1109/ICSMC.2002.1173252(6)Online publication date: 2002
  • (1998)Moving a food trolley around a cornerTheoretical Computer Science10.1016/S0304-3975(97)00121-7191:1-2(193-203)Online publication date: Jan-1998
  • (1995)Reasoning about Geometric Problems using an Elimination MethodAutomated Practical Reasoning10.1007/978-3-7091-6604-8_8(147-185)Online publication date: 1995
  • (1988)A bibliography of quantifier elimination for real closed fieldsJournal of Symbolic Computation10.1016/S0747-7171(88)80016-65:1-2(267-274)Online publication date: 1-Feb-1988

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media