Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1362622.1362700acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability

Published: 10 November 2007 Publication History

Abstract

We report the computational advances that have enabled the first micron-scale simulation of a Kelvin-Helmholtz (KH) instability using molecular dynamics (MD). The advances are in three key areas for massively parallel computation such as on BlueGene/L (BG/L): fault tolerance, application kernel optimization, and highly efficient parallel I/O. In particular, we have developed novel capabilities for handling hardware parity errors and improving the speed of interatomic force calculations, while achieving near optimal I/O speeds on BG/L, allowing us to achieve excellent scalability and improve overall application performance. As a result we have successfully conducted a 2-billion atom KH simulation amounting to 2.8 CPU-millennia of run time, including a single, continuous simulation run in excess of 1.5 CPU-millennia. We have also conducted 9-billion and 62.5-billion atom KH simulations. The current optimized ddcMD code is benchmarked at 115.1 TFlop/s in our scaling study and 103.9 TFlop/s in a sustained science run, with additional improvements ongoing. These improvements enabled us to run the first MD simulations of micron-scale systems developing the KH instability.

References

[1]
M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.
[2]
S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford Univ. Press, Oxford, 1961.
[3]
M. P. Ciamarra, A. Coniglio, and M. Micodemi. Shear instabilities in granular mixtures. Phys. Rev. Lett., 94:188001, 2005.
[4]
P. Crozier, F. Reid, and C. Vaughn. Lammps benchmarks, http://lammps.sandia.gov/bench.html.
[5]
M. S. Daw and M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29(12):6443--6453, 1984.
[6]
P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge Univ. Press, Cambridge, 1981.
[7]
E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375--408, 2002.
[8]
C. Engelmann and A. Geist. Super-scalable algorithms for computing on 100,000 processors. In Computational Science - ICCS 2005, PT 1, Proceedings, volume 3514 of Lecture Notes in Computer Science, pages 313--321, 2005.
[9]
O. B. Fringer and R. L. Street. The dynamics of breaking progressive interfacial waves. J. Fluid Mech., 494:319--353, 2003.
[10]
D. C. Fritts, C. Bizon, J. A. Werne, and C. K. Meyer. Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108:20:1--13, 2003.
[11]
D. C. Fritts, T. L. Palmer, O. Andreassen, and I. Lie. Evolution and breakdown of kelvin-helmholtz billows in stratified compressible flows:1, comparison of two-and three-dimensional flows. J. Atmos. Sci., 53:3173--3191, 1996.
[12]
T. C. Germann, K. Kadau, and P. S. Lomdahl. 25 tflop/s multibillion-atom molecular dynamics simulations and visualization/analysis on bluegene/1. Proc. Supercomputing 2005, Seattle, 2005, on CD-ROM, http://sc05.supercomputing.org/schedule/pdf/papl22.pdf.
[13]
M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-fault recovery for chip multiprocessors. In ISCA '03: Proceedings of the 30th annual international symposium on Computer architecture, pages 98--109, New York, NY, USA, 2003. ACM Press.
[14]
Grape newletter vol.8 (dec 16 2006), http://grape.mtk.nao.ac.jp/grape/newsletter/061216.html.
[15]
J. F. Hawley and N. J. Zabusky. Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett., 63(12): 1241--1244, 1989.
[16]
J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes. Science, 312(5776):1034--1037, 2006.
[17]
R. A. Johnson. Alloy models with the embedded-atom method. Phys. Rev. B, 39:12554, 1989.
[18]
R. A. Johnson and D. J. Oh. Analytic embedded atom method model for bcc metals. J. Mater. Res., 4:1195, 1989.
[19]
V. Junk, F. Heitsch, and T. Naab. The kelvin-helmholtz instability in smoothed particle hydrodynamics. Proc. Int. Astro. Union, 2:210--210, 2007.
[20]
K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lomdahl, G. Dimonte, B. L. Holian, and B. J. Alder. Nanohydrodynamics simulations: An atomistic view of the rayleigh-taylor instability. Proc. Natl. Acad. Sci. USA, 101:5851--5855, 2004.
[21]
K. Kadau, T. C. Germann, and P. S. Lamdahl. Molecular dynamics comes of age: 320 billion atom simulation on bluegene/1. Int. J. Mod. Phys. C, 17:1755, 2006.
[22]
H. Lamb. Hydrodynamics. Cambridge Univ. Press, Cambridge, 6th edition, 1932.
[23]
D. R. Mason, R. E. Rudd, and A. P. Sutton. Stochastic kinetic monte carlo algorithms for long-range hamiltonians. Computer Physics Comm., 160:140--157, 2004.
[24]
J. J. Monaghan. Flaws in the modern laplacian theory. Earth, Moon and Planets, 71:73--84, 1995.
[25]
J. A. Moriarty. Analytic representation of multi-ion interatomic potentials in transition metals. Phys. Rev. B, 42:1609--1628, 1990.
[26]
J. A. Moriarty. Angular forces and melting in bcc transition metals: A case study of molybdenum. Phys. Rev. B, 49:12431--12445, 1994.
[27]
T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi, R. Yanai, R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei. A 55 tflops simulation of amyloid-forming peptides from yeast prion sup35 with the special-purpose computer system mdgrape-3. Proc. Supercomputing 2006, Tampa, 2006, on CD-ROM, http://sc06.supercomputing.org/schedule/pdf/gb106.pdf.
[28]
T. L. Palmer, D. C. Fritts, and O. Andreassen. Evolution and breakdown of kelvin-helmholtz billows in stratified compressible flows:2. instability structure, evolution, and energetics. J. Atmos. Sci., 53:3192--3212, 1996.
[29]
D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge Univ. Press, Cambridge, 1995.
[30]
http://www.sandia.gov/asc/redstorm.html.
[31]
G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: Software implemented fault tolerance. In CGO '05: Proceedings of the international symposium on Code generation and optimization, pages 243--254, Washington, DC, USA, 2005. IEEE Computer Society.
[32]
G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S. Mukherjee. Design and evaluation of hybrid fault-detection systems. SIGARCH Comput. Archit. News, 33(2):148--159, 2005.
[33]
R. E. Rudd and J. Q. Broughton. Coupling of length scales in solid state systems. Phys. Stat. Sol., 217:251--291, 2000.
[34]
SETI@HOME project: http://setiathome.ssl.berkeley.edu.
[35]
F. H. Streitz, J. N. Glosli, and M. V. Patel. Beyond finite-size scaling in solidification simulations. Phys. Rev. Lett., 96:225701, 2006.
[36]
F. H. Streitz, J. N. Glosli, and M. V. Patel. Simulating solidification in metals at high pressure: The drive to petascale computing. J. Phys.: Conf. Ser., 46:254--267, 2006.
[37]
R. I. Sykes and W. S. Lewellen. A numerical study of breaking of kelvin-helmholtz billows using a reynolds-stress turbulence closure model. J. Atmos. Sci., 39:1506--1520, 1982.
[38]
TOP500 Supercomputer Sites: http://www.top500.org/.
[39]
J.-Y. Yang and J.-W. Chang. Rarefied flow instability simulation using model boltzmann equations. Proc. Fluid Dynamics Conf. 28th, Snowmass Village, CO, June 29-July 2, 1997.
[40]
Y. Yeh. Triple-triple redundant 777 primary flight computer. In Proceedings of the 1996 IEEE Aerospace Applications Conference, volume 1, pages 293--307, 1996.
[41]
R. Zhang, X. He, G. Doolen, and S. Chen. Surface tension effect on two-dimensional two-phase kelvin-helmholtz instabilities. Adv. Water Res., 24:461--478, 2001.

Cited By

View all
  • (2022)GLUE Code: A framework handling communication and interfaces between scalesJournal of Open Source Software10.21105/joss.048227:80(4822)Online publication date: Dec-2022
  • (2021)Generalizable coordination of large multiscale workflowsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3458817.3476210(1-16)Online publication date: 14-Nov-2021
  • (2021)Machine-learning-based dynamic-importance sampling for adaptive multiscale simulationsNature Machine Intelligence10.1038/s42256-021-00327-w3:5(401-409)Online publication date: 22-Apr-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing
November 2007
723 pages
ISBN:9781595937643
DOI:10.1145/1362622
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 November 2007

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

SC '07
Sponsor:

Acceptance Rates

SC '07 Paper Acceptance Rate 54 of 268 submissions, 20%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2022)GLUE Code: A framework handling communication and interfaces between scalesJournal of Open Source Software10.21105/joss.048227:80(4822)Online publication date: Dec-2022
  • (2021)Generalizable coordination of large multiscale workflowsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3458817.3476210(1-16)Online publication date: 14-Nov-2021
  • (2021)Machine-learning-based dynamic-importance sampling for adaptive multiscale simulationsNature Machine Intelligence10.1038/s42256-021-00327-w3:5(401-409)Online publication date: 22-Apr-2021
  • (2020)Gaussian variant of Freivalds’ algorithm for efficient and reliable matrix product verificationMonte Carlo Methods and Applications10.1515/mcma-2020-207626:4(273-284)Online publication date: 8-Oct-2020
  • (2020)Checkpoint Restart Support for Heterogeneous HPC Applications2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID)10.1109/CCGrid49817.2020.00-69(242-251)Online publication date: May-2020
  • (2020)Flux: Overcoming scheduling challenges for exascale workflowsFuture Generation Computer Systems10.1016/j.future.2020.04.006Online publication date: Apr-2020
  • (2019)A massively parallel infrastructure for adaptive multiscale simulationsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3356197(1-16)Online publication date: 17-Nov-2019
  • (2019)Comparing GPU Power and Frequency Capping: A Case Study with the MuMMI Workflow2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS)10.1109/WORKS49585.2019.00009(31-39)Online publication date: Nov-2019
  • (2019)Paving the way for China exascale computingCCF Transactions on High Performance Computing10.1007/s42514-019-00010-yOnline publication date: 9-Aug-2019
  • (2019)Application health monitoring for extreme‐scale resiliency using cooperative fault managementConcurrency and Computation: Practice and Experience10.1002/cpe.544932:2Online publication date: 25-Jul-2019
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media