Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1364901.1364928acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Multi-component heart reconstruction from volumetric imaging

Published: 02 June 2008 Publication History

Abstract

Computer Tomography (CT) and in particular super fast, 64 and 256 detector CT has rapidly advanced over recent years, such that high resolution cardiac imaging has become a reality. In this paper, we briefly introduce a framework that we have built to construct three dimensional (3D) finite-element and boundary element mesh models of the human heart directly from high resolution CT imaging data. Although, the overall IMAGING-MODELING framework consists of image processing, geometry processing and meshing algorithms, our main focus in this paper will revolve around three key geometry processing steps which are parts of the so-called IMAGING-MODELING framework. These three steps are geometry cleanup or CURATION, anatomy guided annotation or SEGMENTATION and construction of GENERALIZED OFFSET SURFACE. These three algorithms, due to the very nature of the computation involved, can also be thought as parts of a more generalized modeling technique, namely geometric modeling with distance function. As part of the results presented in the paper, we will show that our algorithms are robust enough to effectively deal with the challenges posed by the real-world patient CT data collected from our radiologist collaborators.

References

[1]
Allouche, C. F., Makam, S., Ayache, N., and Delingette, H. 2001. A new kinetic modeling scheme for the human left ventricle wall motion with mr-tagging imaging. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 61--68.
[2]
Bajaj, C., and Goswami, S. 2006. Automatic fold and structural motif elucidation from 3d em maps of macromolecules. In ICVGIP 2006, 264--275.
[3]
Bajaj, C., and Xu, G. 2001. Smooth shell construction with mixed prism fat surfaces. Brunett, G., Bieri, H., Farin, G. (eds.), Geometric Modeling Computing Supplement 14, 19--35.
[4]
Bajaj, C., and Xu, G. 2003. Anisotropic diffusion of surfaces and functions on surfaces. ACM Transactions on Graphics 22, 1, 4--32.
[5]
Bajaj, C., Goswami, S., Yu, Z., Zhang, Y., Bazilevs, Y., and Hughes, T. 2006. Patient specific heart models from high resolution ct. In Proceedings of Computational Modelling of Objects Represented in Images, CompIMAGE, 157--165.
[6]
Bajaj, C., Gillette, A., and Goswami, S. 2007. Topology based selection and curation of level sets. In Topology-in-Visualization, A. Wiebel, H. Hege, K. Polthier, and G. Scheuer-mann, Eds.
[7]
Biswas, A., Shapiro, V., and Tsukanov, I. 2004. Heterogeneous material modeling with distance fields. Computer Aided Geometric Design 21, 3, 215--242.
[8]
Braess, D. 1995. Towards algebraic multigrid for elliptic problems of second order. Computing 55, 379--393.
[9]
Brown, P., Byrne, G., and Hindmarsh, A. 1989. VODE: A variable-coefficient ode solver. SIAM Journal on Scientific Computation 10, 1038--1057.
[10]
Cgal Consortium. 2007. CGAL (3.3.1): Computational Geometry Algorithms Library. http://www.cgal.org.
[11]
Chazal, F., and Lieutier, A. 2004. Stability and homotopy of a subset of the medial axis. In Proc. 9th ACM Sympos. Solid Modeling and Applications, 243--248.
[12]
Chazal, F., and Lieutier, A. 2006. Topology guaranteeing manifold reconstruction using distance function to noisy data. In Sympos. on Comput. Geom., 112--118.
[13]
Chen, Y. J., and Ravani, B. 1987. Offset surface generation and contouring in computer-aided design. Journal of Mech. Trans. Autom. Design 109, 1, 133--142.
[14]
Costa, K. D., Hunter, P. J., Wayne, J. S., Waldmann, L. K., Guccione, J. M., and Mcculloch, A. D. 1996. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Ii - prolate spheroidal coordinates. J. Biomedical Engineering 118, 4 (November), 464--472.
[15]
Cvc, UT Austin. 2005. Volrover. http://cvcweb.ices.utexas.edu/software/guides.php.
[16]
De Munck, J. 1992. A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans Biomed. Eng. 39, 9 (September), 986--990.
[17]
Dey, T. K., and Goswami, S. 2003. Tight cocone: A water-tight surface reconstructor. In Proc. 8th ACM Sympos. Solid Modeling and Applications, 127--134.
[18]
Dey, T. K., and Goswami, S. 2004. Provable surface reconstruction from noisy samples. In Proc. 20th ACM-SIAM Sympos. Comput. Geom., 330--339.
[19]
Dey, T. K., Giesen, J., and Goswami, S. 2003. Shape segmentation and matching with flow discretization. In Proc. Workshop Algorithms Data Strucutres (WADS 03), F. Dehne, J.-R. Sack, and M. Smid, Eds., LNCS 2748, 25--36.
[20]
Dey, T. K., Giesen, J., Ramos, E., and Sadri, B. 2005. Critical points of the distance to an epsilon-sampling of a surface and flow-complex-based surface reconstruction. In Proc. 21st ACM-SIAM Sympos. Comput. Geom., 218--227.
[21]
Edelsbrunner, H., Facello, M. A., and Liang, J. 1998. On the definition and the construction of pockets in macromolecules. Discrete Apl. Math. 88, 83--102.
[22]
Edelsbrunner, H. 2002. Surface reconstruction by wrapping finite point sets in space. In Ricky Pollack and Eli Goodman Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, Eds. Springer-Verlag, 379--404.
[23]
Geometry Center, University of Minnesota. 1996. Geomview. http://www.geomview.org/.
[24]
Giesen, J., and John, M. 2003. The flow complex: a data structure for geometric modeling. In Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, 285--294.
[25]
Goerres, G. W., Kamel, E., Seifert, B., Burger, C., Buck, A., Hany, T. F., and Schulthess, G. K. V. 2002. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated pet/ct system. Journal Nucl. Med. 43, 1469--1475.
[26]
Goswami, S., Dey, T. K., and Bajaj, C. L. 2006. Identifying flat and tubular regions of a shape by unstable manifolds. In Proc. 11th Sympos. Solid and Physical Modeling, 27--37.
[27]
Goswami, S., Gillette, A., and Bajaj, C. 2007. Efficient Delaunay mesh generation from sampled scalar function. In Proc. 16th Int. Meshing Roundtable, 495--511.
[28]
Hackbusch, W. 1985. Multi-Grid Methods and Applications. Springer Verlag, Berlin, Heidelberg, New York, Tokyo.
[29]
Hille, B. 1992. Ionic Channels of Excitable Membranes., Second ed. Sinauer Associates, Inc., Sunderland, MA.
[30]
Hodgkin, A. L., and Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500--544.
[31]
Hunter, P., McCulloch, A., Nielsen, P., and Smaill, B. 1988. A finite element model of passive ventricular mechanics. ASMS BED 9, 387--397.
[32]
Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. In SIGGRAPH 2002, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH, 339--346.
[33]
Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3.
[34]
Lorensen, W., and Cline, H. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In SIGGRAPH, 163--169.
[35]
Luo, C., and Rudy, Y. 1991. A model of the ventricular cardiac action potential: Depolarization, repolarization and their interaction. Circulation Research 68, 6, 1501--1526.
[36]
Luo, C., and Rudy, Y. 1994. A dynamic model of the cardiac ventricular action potential: I. simulations of ionic currents and concentration changes. Circulation Research 74, 6, 1071--1096.
[37]
Maekawa, T. 1999. An overview of offset curves and surfaces. Computer-Aided Design 31, 3, 165--173.
[38]
Mari, J.-L., Astart, L., and Sequeira, J. 2001. Geometrical modeling of the heart and its main vessels. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 10--16.
[39]
McVeigh, E., Faris, O., Ennis, D., Helm, P., and Evans, F. 2001. Measurement of ventricular wall motion, epicardial electrical mapping, and myocardial fiber angles in the same heart. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 76--82.
[40]
Muller, C., Rombaut, M., and Janier, M. 2001. Dempster shafer approach for high level data fusion applied to the assessment of myocardial viability. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 104--112.
[41]
Pinsky, H., Dyda, S., Pinsky, R., Misch, K., and Sarment, D. 2006. Accuracy of three-dimensional measurements using cone-beam ct. Dentomaxillofac. Radiol. 35, 6, 410--416.
[42]
Pottmann, H. 1995. Rational curves and surfaces with rational offsets. Computer Aided Geometric Design 12, 2, 175--192.
[43]
Pottmann, H. 1997. General offset surfaces. Neural, Parallel & Scientific Computationsi 5, 1--2, 55--80.
[44]
Rogers, J. M., and McCulloch, A. D. 1994. A collocation-galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed. Eng. 41, 743--757.
[45]
Rudy, Y., and Plonsey, R. 1980. A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ. Res. 46, 283--291.
[46]
Sachse, F. B. 2004. Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. LNCS 2966. Springer, Berlin, Heidelberg, New York.
[47]
Sahni, O., Mueller, J., Jansen, K. E., Shephard, M. S., and Taylor, C. A. 2005. Efficient anisotropic adaptive discretization of the cardiovascular system. Tech. rep., RPI.
[48]
Sahni, O. 2005. Adaptive procedure for efficient blood-flow simulations. PhD thesis, RPI.
[49]
Siersma, D. 1999. Voronoi diagrams and morse theory of the distance function. In Geometry in Present Day Science, O. E. Barndorff and E. B. V. Jensen, Eds. 187--208.
[50]
Simelius, K., Nenonen, J., and Horacek, B. M. 2001. Simulation of anisotropic propagation in the myocardium with a hybrid bidomain model. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 140--147.
[51]
Taylor, C., Hughes, T., and Zarins, C. 1998. Finite element modeling of 3-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis. Annals of Biomedical Engineering 26, 6, 1--13.
[52]
Taylor, C., Hughes, T., and Zarins, C. 1998. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 158, 1--2, 155--196.
[53]
Taylor, C., Hughes, T., and Zarins, C. 1999. Effect of exercise on hemodynamic conditions in the abdominal aorta. Journal of Vascular Surgery 29, 1077--89.
[54]
Tilg, B., Modre, R., Fischer, G., Hanser, F., Messnarz, B., and Roithinger, F. X. 2001. Imaging of electrical function within the human atrium and ventricle from paced ecg mapping data. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 148--156.
[55]
Toshiba Medical Systems - 64 Slice CT. 2006. Clinical advancement in volumetric CT.
[56]
Veistera, H., and Lotjonen, J. 2001. Reconstructing 3d boundary element heart models from 2d biplane fluoroscopy. In Functional Imaging and Modeling of Heart, T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen, Eds., LNCS, 17--23.
[57]
Vetter, F., McCulloch, A., and Rogers, J. 1998. A finite element model of passive mechanics and electrical propagation in the rabbit ventricles. Computers in Cardiology, 705--708.
[58]
Winslow, R. L., Scollan, D. F., Holmes, A., Yung, C. K., Zhang, J., and Jafri, M. S. 2000. Electrophysiological modeling of cardiac ventricular function: From cell to organ. Annual Reviews in Biomedical Engineering 2, 119--155.
[59]
Yin, L., Luo, X., and Shephard, M. S. 2005. Identifying and meshing thin sections of 3-d curved domains. Tech. rep., RPI.
[60]
Yu, Z., and Bajaj, C. 2002. Normalized gradient vector diffusion and image segmentation. In Proceedings of European Conference on Computer Vision, 517--530.
[61]
Yu, Z., and Bajaj, C. 2004. A fast and adaptive algorithm for image contrast enhancement. In Proc of IEEE International Conference on Image Processing, 1001--1004.
[62]
Zhang, Y., Bajaj, C. L., and Xu, G. 2008. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering, To appear.

Cited By

View all
  • (2015)Visualization of Pressure and Stress Distributions in Aortic Valve Simulation by Considering Heart's Pulsation and Axial FlowThe Journal of the Society for Art and Science10.3756/artsci.14.114:1(1-8)Online publication date: 25-Mar-2015
  • (2015)A mathematical model of the carp heart ventricle during the cardiac cycleJournal of Theoretical Biology10.1016/j.jtbi.2015.03.014373(12-25)Online publication date: May-2015
  • (2013)GPU-based offset surface computation using point samplesComputer-Aided Design10.1016/j.cad.2012.10.01545:2(321-330)Online publication date: Feb-2013
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling
June 2008
423 pages
ISBN:9781605581064
DOI:10.1145/1364901
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 June 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. CT-angio imaging
  2. Delaunay triangulation
  3. Voronoi diagram
  4. distance function
  5. stable manifold

Qualifiers

  • Research-article

Funding Sources

Conference

SPM08
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2015)Visualization of Pressure and Stress Distributions in Aortic Valve Simulation by Considering Heart's Pulsation and Axial FlowThe Journal of the Society for Art and Science10.3756/artsci.14.114:1(1-8)Online publication date: 25-Mar-2015
  • (2015)A mathematical model of the carp heart ventricle during the cardiac cycleJournal of Theoretical Biology10.1016/j.jtbi.2015.03.014373(12-25)Online publication date: May-2015
  • (2013)GPU-based offset surface computation using point samplesComputer-Aided Design10.1016/j.cad.2012.10.01545:2(321-330)Online publication date: Feb-2013
  • (2012)Orthotropic active strain models for the numerical simulation of cardiac biomechanicsInternational Journal for Numerical Methods in Biomedical Engineering10.1002/cnm.247328:6-7(761-788)Online publication date: 28-Feb-2012
  • (2010)Multi-Tissue Tetrahedral Mesh Generation from Medical Images2010 4th International Conference on Bioinformatics and Biomedical Engineering10.1109/ICBBE.2010.5514705(1-4)Online publication date: Jun-2010
  • (2008)PROTO-PLASM: parallel language for adaptive and scalable modelling of biosystemsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rsta.2008.0076366:1878(3045-3065)Online publication date: 13-Sep-2008

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media