Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Parametric yield management for 3D ICs: Models and strategies for improvement

Published: 07 November 2008 Publication History

Abstract

Three-Dimensional (3D) Integrated Circuits (ICs) that integrate die with Through-Silicon Vias (TSVs) promise to continue system and functionality scaling beyond the traditional geometric 2D device scaling. 3D integration also improves the performance of ICs by reducing the communication time between different chip components through the use of short TSV-based vertical wires. This reduction is particularly attractive in processors where it is desirable to reduce the access time between the main logic die and the L2 cache or the main memory die. Process variations in 2D ICs lead to a drop in parametric yield (as measured by speed, leakage and sales profits), which forces manufacturers to speed bin their chips and to sell slow chips at reduced prices. In this paper we develop a model to quantify the impact of process variations on the parametric yield of 3D ICs, and then we propose a number of integration strategies that use a graph-theoretic framework to maximize the performance, parametric yield and profits of 3D ICs. Comparing our proposed strategies to current yield-oblivious methods, it is demonstrated that it is possible to increase the number of 3D ICs in the fastest speed bins by almost 2×, while simultaneously reducing the number of slow ICs by 29.4%. This leads to an improvement in performance by up to 6.45% and an increase of about 12.48% in total sales revenue using up-to-date market price models.

References

[1]
Baas, B. M. 1999. A low-power, high-performance 1024-point FFT processor. IEEE J. Solid-State Circ. 34, 3, 380--387.
[2]
Baliga, J. 2004. Chips go vertical. IEEE Spectrum Mag. 41, 3, 43--47.
[3]
Banerjee, K., Souri, S. J., Kaput, P., and Saraswat, K. C. 2001. 3-D ICs: A novel chip design for deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 89, 5, 602--633.
[4]
Benkart, P., Kaiser, A., Munding, A., Bschorr, M., Pfleiderer, H.-J., Kohn, E., Heittmann, A., Huebner, H., and Ramacher, U. 2005. 3D chip stack technology using through-chip interconnects. IEEE Des. Test Comput. 22, 6, 512--518.
[5]
Beyne, E. 2004. 3D interconnection and packaging: Impending reality or still a dream? In Proceedings of the IEEE International Solid-State Circuits Conference, 138--139.
[6]
Bhardwaj, S., Vrudhuka, S., Ghanta, P., and Cao, Y. 2006. Modeling of intra-die process variation for accurate analysis and optimization of nano-scale circuits. In Proceedings of the Design Automation Conference, 791--796.
[7]
Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., and De, V. 2003. Parameter variations and impact on circuits and microarchitecture. In Proceedings of the Design Automation Conference, 338--342.
[8]
Bowman, K., Duvall, S., and Meindl, J. 2002. Impact of die-to-die and within-die parameter fluctations on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid State Electron. 37, 2, 183--190.
[9]
Burger, D. C. and Austin, T. M. 1997. The SimpleScalar tool set, version 2.0. Tech. Rep. CS-TR-1997-1342.
[10]
Burns, J. A., Aull, B. F., Chen, C., Chen, C.-L., Keast, C. L., Knecht, J., Suntharalingam, V., Warner, K., Wyatt, P., and Yost, D.-R. 2006. A wafer-scale 3-D circuit integration technology. IEEE Trans. Electron. Devices 53, 10, 2507--2516.
[11]
Cook, W. and Rohe, A. 1999. Computing minimum weight perfect matchings INFORMS J. Comput. 11, 38--148. http://www.or.uni-bonn.de/home/rohe/matching.html.
[12]
Cory, B. D., Kapur, R., and Underwood, B. 2003. Speed binning with path delay test in 150-nm technology. IEEE Des. Test Comput. 20, 5, 41--45.
[13]
Das, S., Chandrakasan, A., and Reif, R. 2004. Timing, energy, and thermal performance of three-dimensional integrated circuits. In Proceedings of the Great Lakes Symposium on VLSI, 338--343.
[14]
Datta, A., Bhunia, S., Choi, J. H., Mukhopadhyay, S., and Roy, K. 2006. Speed binning aware design methodology to improve profit under parameter variations. In Proceedings of the Asia and South Pacific Design Automation Conference, 712--717.
[15]
Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., Saraswat, K. C., Rahman, A., Reif, R., and Meindl, J. 2001. Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 89, 3, 305--324.
[16]
Davis, W. R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A., Steer, M., and Franzon, P. D. 2005. Demystifying 3D ICs: The pros and cons of going vertical. IEEE Des. Test Comput. 22, 6, 498--510.
[17]
Fukushima, T., Yamada, Y., and Koyanagi, M. 2006. New three-dimensional integration technology using chip-to-wafer bonding to acheive ultimate super-chip integration. Japan. J. Appl. Phys. 45, 4B, 3030--3035.
[18]
Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st (23rd printing) ed. W.H. Freeman and Company.
[19]
Grossar, E., Stucchi, M., Maes, K., and Dehaene, W. 2006. Statistically aware SRAM memroy array design. In Proceedings of the International Symposium on Quality Electronic Design, 25--30.
[20]
Humenay, E., Arjan, D., and Skadron, K. 2006. Impact of parameter variations on multi-core chips. In Proceedings of the Workshop on Architectural Support for Gigascale Integration, 1--9.
[21]
Im, S. and Banerjee, K. 2000. Full chip thermal analysis of planar (2-D) and vertically intergrated (3-D) high performance ICs. In Proceedings of the IEEE International Electron Devices Meeting, 727--730.
[22]
ITRS. 2008. International technology roadmap for semiconductors. http://public.itrs.net.
[23]
Jacob, P., Erdogan, O., Zia, A., Belemjian, P. M., Kraft, R. P., and McDonald, J. F. 2005. Predicting the performance of a 3D processor-memory chip stack. IEEE Des. Test Comput. 22, 6, 540--547.
[24]
Kim, C., Kim, J.-J., Chang, I.-J., and Roy, K. 2006. PVT-Aware leakage reduction for on-die caches with improved read stability. IEEE J. Solid-State Circ. 41, 1, 170--178.
[25]
Kuhn, H. W. 1955. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83--97.
[26]
Lattice. 2008. LatticeMico32 asynchronous SRAM controller datasheet. http://www.latticesemi.com/documents/doc21610x19.pdf.
[27]
Li, F., Nicopoulos, C., Richardson, T., Xie, Y., Narayanan, V., and Kandemir, M. 2006. Design and management of 3D chip multiprocessors using network-in-memory. In Proceedings of the International Symposium on Computer Architecture, 130--141.
[28]
Liu, C. C., Ganusov, I., Burtscher, M., and Tiwari, S. 2005. Bridging the processor-memory performance gap with 3D IC technology. IEEE Des. Test Comput. 22, 6, 556--564.
[29]
Loi, G. L., Agrawal, B., Srivastava, N., L., S.-C., Sherwood, T., and Banerjee, K. 2006. A thermally-aware performance analaysis of vertically integrated (3-D) processor-memory hierarchy. In Proceedings of the Design Automation Conference, 991--996.
[30]
Marculescu, D. and Talpes, E. 2005. Variability and energy awareness: A microarchitecture-level perspective. In Proceedings of the Design Automation Conference, 11--16.
[31]
Meng, K. and Joseph, R. 2006. Process variation aware cache leakage management. In Proceedings of the International Symposium on Low-Power Electronics, 262--267.
[32]
Munkres, J. 1957. Algorithms for the assignment and transportation problems. J. Soc. Industrial Appl. Math. 5, 1, 32--38.
[33]
Orshansky, M., Milnor, L., Chen, P., Keutzer, K., and Hu, C. 2002. Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 21, 5, 544--553.
[34]
Patti, R. S. 2006. Three-Dimensional integrated circuits and the future of systems-on-chip designs. Proc. IEEE 94, 6, 1214--1224.
[35]
PTM. 2008. Predictive technology model. http://www.eas.asu.edu/~ptm/introduction.html.
[36]
Raj, S., Vrudhula, S. B. K., and Wang, J. 2004. A methodology to improve timing yield in the presence of process variations. In Proceedings of the Design Automation Conference, 448--453.
[37]
Rao, R. R., Blaauw, D., Sylvester, D., and Devgan, A. 2005. Modeling and anlysis of parametric yield under power and performance constraints. IEEE Des. Test Comput. 22, 4, 376--385.
[38]
Reif, R., Fan, A., Chen, K.-N., and Das, S. 2002. Fabrication technologies for three-dimensional integrated circuits. In Proceedings of the International Symposium on Quality Electronic Design Automation, 33--37.
[39]
Saxena, P., Menezes, N., Cocchini, P., and Kirkpatrick, D. A. 2004. Repeater scaling and its impact on CAD. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23, 4, 451--463.
[40]
Scheiring, C. 2004. Advanced-Chip-to-Wafer technology: Enabling technology for volume production of 3D system integration on wafer level. In Proceedings of the International Microelectronics And Packaging Society, 1--11.
[41]
Smith, L., Smith, G., Hosali, S., and Arkalgud, S. 2007a. 3-D: It all comes down to cost. In Proceedings of the 3-D Architectures for Semiconductor Integration and Packaging.
[42]
Smith, L., Smith, G., Hosali, S., and Arkalgud, S. 2007b. Yield considerations in the choice of 3D technology. In Proceedings of the IEEE International Symposium on Semiconductor Manufacturing, 535--537.
[43]
SPEC. 2000. SPEC 2000 benchmarks. http://www.spec.org/cpu/.
[44]
Topol, A. W., La Tulipe, J. D. C., Shi, L., Frank, D. J., Bernstein, K., Steen, S. E., Kumar, A., Singco, G. U., Young, A. M., Guarini, K. W., and Ieong, M. 2006. Three-Dimensional integrated circuits. IBM J. Res. Develop 50, 4-5, 491--506.
[45]
Tsai, Y.-F., Xie, Y., Vijaykrishnan, N., and Irwin, M. J. 2005. Three-Dimensional cache design exploration using 3D cacti. In Proceedings of the International Conference on Computer Design, 519--524.
[46]
Wilton, S. and Jouppi, N. P. 1996. CACTI: An enhanced cache access and cycle time model. IEEE J. Solid-State Circ. 31, 5, 677--688.
[47]
Wuu, J., Weiss, D., Morganti, C., and Dreesen, M. 2005. The asynchronous 24MB on-chip level-3 cache for a dual-core itanium family processor. In Proceedings of the International Solid-State Circuits Conference, 488--612.
[48]
Xie, Y., Loh, G. H., Black, B., and Bernstein, K. 2006. Design space exploration for 3D architectures. J. Emerg. Technol. Comput. Syst. 2, 2, 65--103.
[49]
Zeng, A., Li, J., Rose, K., and Gutmann, R. J. 2005. First-Order performance prediction of cache memory with wafer-level 3D integration. IEEE Des. Test Comput. 22, 6, 548--555.

Cited By

View all

Index Terms

  1. Parametric yield management for 3D ICs: Models and strategies for improvement

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 4, Issue 4
      October 2008
      123 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/1412587
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 07 November 2008
      Accepted: 01 June 2008
      Revised: 01 April 2008
      Received: 01 November 2007
      Published in JETC Volume 4, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. 3D integration
      2. leakage
      3. performance
      4. process variations
      5. yield management

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)15
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 27 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)A Review of Digital Pixel SensorsIEEE Access10.1109/ACCESS.2025.352687913(8533-8551)Online publication date: 2025
      • (2022)Addressable WAT Test of Domestic Semitronix Tester2022 China Semiconductor Technology International Conference (CSTIC)10.1109/CSTIC55103.2022.9856912(1-2)Online publication date: 20-Jun-2022
      • (2022)Yield-aware joint die packing, die matching and static thread mapping for hard real-time 3D embedded CMPsMicroprocessors & Microsystems10.1016/j.micpro.2022.10454392:COnline publication date: 1-Jul-2022
      • (2017)Modeling collinear WATs for parametric yield enhancement in semiconductor manufacturing2017 13th IEEE Conference on Automation Science and Engineering (CASE)10.1109/COASE.2017.8256192(739-743)Online publication date: 20-Aug-2017
      • (2016)Improved performance of 3DIC implementations through inherent awareness of mix-and-match die stackingProceedings of the 2016 Conference on Design, Automation & Test in Europe10.5555/2971808.2971822(61-66)Online publication date: 14-Mar-2016
      • (2016)Layer-Aware 3D-IC Partitioning for Area-Overhead Reduction Considering the Power of Interconnections and PadsIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.E99.A.1206E99.A:6(1206-1215)Online publication date: 2016
      • (2016)Boosting Service Availability for Base Stations of Cellular Networks by Event-driven Battery ProfilingACM SIGMETRICS Performance Evaluation Review10.1145/3003977.300400244:2(88-93)Online publication date: 29-Sep-2016
      • (2016)Generalized Deep Transfer Networks for Knowledge Propagation in Heterogeneous DomainsACM Transactions on Multimedia Computing, Communications, and Applications10.1145/299857412:4s(1-22)Online publication date: 18-Nov-2016
      • (2016)Deep Learning at Scale and at EaseACM Transactions on Multimedia Computing, Communications, and Applications10.1145/299646412:4s(1-25)Online publication date: 2-Nov-2016
      • (2016)Toward Delay-Efficient Game-Aware Data Centers for Cloud GamingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/298363912:5s(1-19)Online publication date: 21-Sep-2016
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media