Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1526709.1526756acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Visual diversification of image search results

Published: 20 April 2009 Publication History

Abstract

Due to the reliance on the textual information associated with an image, image search engines on the Web lack the discriminative power to deliver visually diverse search results. The textual descriptions are key to retrieve relevant results for a given user query, but at the same time provide little information about the rich image content.
In this paper we investigate three methods for visual diversification of image search results. The methods deploy lightweight clustering techniques in combination with a dynamic weighting function of the visual features, to best capture the discriminative aspects of the resulting set of images that is retrieved. A representative image is selected from each cluster, which together form a diverse result set.
Based on a performance evaluation we find that the outcome of the methods closely resembles human perception of diversity, which was established in an extensive clustering experiment carried out by human assessors.

References

[1]
A. Bhattacharyya. On a measure of divergence between two statistical populations defined by probability distribution. Bul l. Calcutta Math. Soc., 35:99--109, 1493.
[2]
D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. Hierarchical clustering of www image search results using visual, textual and link information. In MULTIMEDIA '04: Proceedings of the 12th annual ACM international conference on Multimedia, pages 952--959, New York, NY, USA, 2004. ACM.
[3]
S. A. Chatzichristo's and Y. S. Boutalis. Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In A. Gasteratos, M. Vincze, and J. K. Tsotsos, editors, ICVS, volume 5008 of Lecture Notes in Computer Science, pages 312--322. Springer, 2008.
[4]
R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Computer Surveys, 40(2):1--60, 2008.
[5]
E. Fowlkes and C. Mallows. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383):553--569, 1983.
[6]
J. Goldberger, S. Gordon, and H. Greenspan. Unsupervised image-set clustering using an information theoretic framework. IEEE Transactions on Image Processing, 15(2):449--458, 2006.
[7]
J. Huang, S. R. Kumar, and R. Zabih. An automatic hierarchical image classification scheme. In MULTIMEDIA '98: Proceedings of the sixth ACM international conference on Multimedia, pages 219--228, 1998.
[8]
Y. Liu, D. Zhang, G. Lu, and W.--Y. Ma. A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1):262--282, 2007.
[9]
M. MeilØa. Comparing clusterings : an information based distance. Journal of Multivariate Analysis, 98(5):873--895, 2007.
[10]
P.-A. Moellic, J.-E. Haugeard, and G. Pitel. Image clustering based on a shared nearest neighbors approach for tagged collections. In CIVR '08: Proceedings of the 2008 international conference on Content-based image and video retrieval, pages 269--278, New York, NY, USA, 2008. ACM.
[11]
P. Salembier and T. Sikora. Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley & Sons, Inc., New York, NY, USA, 2002.
[12]
A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 22(12):1349--1380, Dec 2000.
[13]
K. Song, Y. Tian, W. Gao, and T. Huang. Diversifying the image retrieval results. In MULTIMEDIA '06: Proceedings of the 14th annual ACM international conference on Multimedia, pages 707--710, New York, NY, USA, 2006. ACM.
[14]
H. Tamura, S. Mori, and T. Yamawaki. Texture features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics, 8(6), 1978.
[15]
R. van Zwol. Multimedia strategies for b3-sdr, based on principle component analysis. In Advances in XML Information Retrieval, Lecture Notes in Computer Science. Springer, 2006.
[16]
R. van Zwol, V. Murdock, L. Garcia, and G. Ramirez. Diversifying image search with user generated content. In Proceedings of the International ACM Conference on Multimedia Information Retrieval, 2008.
[17]
D. Wallace. Comment. Journal of the American Statistical Association, 78(383):569--576, 1983.
[18]
S. Wang, F. Jing, J. He, Q. Du, and L. Zhang. Igroup: presenting web image search results in semantic clusters. In CHI '07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 587--596, New York, NY, USA, 2007. ACM.
[19]
K. Weinberger, M. Slaney, and R. van Zwol. Resolving tag ambiguity. In Proceedings of the 16th International ACM Conference on Multimedia (MM 2008), Vancouver, Canada, November 2008.
[20]
P. Wilkins, P. Ferguson, and A. F. Smeaton. Using score distributions for query-time fusion in multimediaretrieval. In MIR '06: Proceedings of
[21]
the 8th ACM international workshop on Multimedia information retrieval, pages 51--60, New York, NY, USA, 2006. ACM.
[22]
S. A. Yahia, P. Bhat, J. Shanmugasundaram, U. Srivastava, and E. Vee. Efficient online computation of diverse query results. In Proceedings of VLDB, 2007.
[23]
B. Zhang, H. Li, Y. Liu, L. Ji, W. Xi, W. Fan, Z. Chen, and W.-Y. Ma. Improving web search results using affinity graph. In SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research
[24]
and development in information retrieval, pages 504--511, New York, NY, USA, 2005. ACM.
[25]
C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In WWW '05: Proceedings of the 14th international conference on World Wide Web, pages 22--32, New York, NY, USA, 2005. ACM.

Cited By

View all
  • (2024)Generalized People Diversity: Learning a Human Perception-Aligned Diversity Representation for People ImagesProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658940(797-821)Online publication date: 3-Jun-2024
  • (2023)Query Refinement for Diversity Constraint SatisfactionProceedings of the VLDB Endowment10.14778/3626292.362629517:2(106-118)Online publication date: 1-Oct-2023
  • (2023)Boosting Diversity in Visual Search with Pareto Non-Dominated Re-RankingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/362529620:3(1-23)Online publication date: 10-Nov-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '09: Proceedings of the 18th international conference on World wide web
April 2009
1280 pages
ISBN:9781605584874
DOI:10.1145/1526709

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 April 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. flickr
  2. image clustering
  3. visual diversity

Qualifiers

  • Research-article

Conference

WWW '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)2
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Generalized People Diversity: Learning a Human Perception-Aligned Diversity Representation for People ImagesProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658940(797-821)Online publication date: 3-Jun-2024
  • (2023)Query Refinement for Diversity Constraint SatisfactionProceedings of the VLDB Endowment10.14778/3626292.362629517:2(106-118)Online publication date: 1-Oct-2023
  • (2023)Boosting Diversity in Visual Search with Pareto Non-Dominated Re-RankingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/362529620:3(1-23)Online publication date: 10-Nov-2023
  • (2023)Social Biases through the Text-to-Image Generation LensProceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society10.1145/3600211.3604711(786-808)Online publication date: 8-Aug-2023
  • (2023)A Light Touch Approach to Teaching Transformers Multi-view Geometry2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.00480(4958-4969)Online publication date: Jun-2023
  • (2022)Amazon Shop the Look: A Visual Search System for Fashion and HomeProceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3534678.3539071(2822-2830)Online publication date: 14-Aug-2022
  • (2022)Multi-Modal Knowledge Graph Construction and Application: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.3224228(1-20)Online publication date: 2022
  • (2022)An overview of cluster-based image search result organization: background, techniques, and ongoing challengesKnowledge and Information Systems10.1007/s10115-021-01650-9Online publication date: 11-Feb-2022
  • (2022)Clustering Image Search Results by Entity DisambiguationMachine Learning and Knowledge Discovery in Databases10.1007/978-3-662-44845-8_24(369-384)Online publication date: 10-Mar-2022
  • (2021)SymbolFinder: Brainstorming Diverse Symbols Using Local Semantic NetworksThe 34th Annual ACM Symposium on User Interface Software and Technology10.1145/3472749.3474757(385-399)Online publication date: 10-Oct-2021
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media