Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A survey of Web clustering engines

Published: 30 July 2009 Publication History

Abstract

Web clustering engines organize search results by topic, thus offering a complementary view to the flat-ranked list returned by conventional search engines. In this survey, we discuss the issues that must be addressed in the development of a Web clustering engine, including acquisition and preprocessing of search results, their clustering and visualization. Search results clustering, the core of the system, has specific requirements that cannot be addressed by classical clustering algorithms. We emphasize the role played by the quality of the cluster labels as opposed to optimizing only the clustering structure. We highlight the main characteristics of a number of existing Web clustering engines and also discuss how to evaluate their retrieval performance. Some directions for future research are finally presented.

References

[1]
Abney, S. 1991. Parsing by Chunks. In Principle-Based Parsing: Computation and Psycholinguistics, R. C. Berwick, S. P. Abney, and C. Tenny, Eds. Kluwer Academic Publishers, 257--278.
[2]
Allen, R. B., Obry, P., and Littman, M. 1993. An interface for navigating clustered document sets returned by queries. In Proceedings of the ACM Conference on Organizational Computing Systems. ACM Press, 166--171.
[3]
Alonso, O. and Gertz, M. 2006. Clustering of search results using temporal attributes. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 597--598.
[4]
Anagnostopoulos, A., Broder, A., and Punera, K. 2006. Effective and efficient classification on a search-engine model. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM Press, 208--217.
[5]
Bade, K. and Nürnberger, A. 2006. Personalized hierarchical clustering. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. IEEE, 181--187.
[6]
Broder, A. 2002. A taxonomy of Web search. ACM SIGIR Forum 36, 2, 3--10.
[7]
Carpineto, C., Della Pietra, A., Mizzaro, S., and Romano, G. 2006. Mobile Clustering Engine. In Proceedings of the 28th European Conference on Information Retrieval. Lecture Notes in Computer Science, vol. 3936. Springer, 155--166.
[8]
Carpineto, C., Mizzaro, S., Romano, G., and Snidero, M. 2009. Mobile information retrieval with search results clustering: Prototypes and evaluations. J. Amer. Soc. Inform. Sci. Tec. 60, 5, 877--895.
[9]
Carpineto, C. and Romano, G. 2004a. Concept Data Analysis: Theory and Applications. Wiley.
[10]
Carpineto, C. and Romano, G. 2004b. Exploiting the potential of concept lattices for information retrieval with CREDO. J. Univ. Comput. Sci. 10, 8, 985--1013.
[11]
Carpineto, C., Romano, G., and Giannini, V. 2002. Improving retrieval feedback with multiple term-ranking function combinations. ACM Trans. Inform. Syst. 20, 3, 259--290.
[12]
Chakrabarti, S., Dom, B., Agrawal, R., and Raghavan, P. 1998. Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. Inter. J. VLDB, 7, 3, 163--178.
[13]
Chen, H. and Dumais, S. 2000. Bringing order to the Web: Automatically categorizing search results. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, 145--152.
[14]
Cheng, D., Vempala, S., Kannan, R., and Wang, G. 2005. A divide-and-merge methodology for clustering. In Proceedings of the 24th ACM Symposium on Principles of Database Systems, C. Li, Ed. ACM Press, 196--205.
[15]
Cigarrán, J., Peñas, A., Gonzalo, J., and Verdejo, F. 2005. Evaluating hierarchical clustering of search results. In Proceedings of the 12th International Conference on String Processing and Information Retrieval (SPIRE). Springer, 49--54.
[16]
Cole, R., Eklund, P., and Stumme, G. 2003. Document retrieval for email search and discovery using formal concept analysis. Appl. Artif. Intell. 17, 3, 257--280.
[17]
Cutting, D. R., Pedersen, J. O., Karger, D., and Tukey, J. W. 1992. Scatter/Gather: A cluster-based approach to browsing large document collections. In Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 318--329.
[18]
De Luca, E. W. and Nürnberger, A. 2005. Supporting information retrieval on mobile devices. In Proceedings of the 7th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI'05). ACM Press, New York, NY, 347--348.
[19]
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, T. K. 1990. Indexing by latent semanic analysis. J. Amer. Soc. Inform. Sci. 41, 6, 391--407.
[20]
Di Giacomo, E., Didimo, W., Grilli, L., and Liotta, G. 2007. Graph visualization techniques for Web clustering engines. IEEE Trans. Visual. Comput. Graph. 13, 2, 294--304.
[21]
Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V., and Sachs, J. 2004. Swoogle: a search and metadata engine for the semantic web. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM Press, 652--659.
[22]
Dom, B. E. 2001. An information-theoretic external cluster-validity measure. Tech. rep. RJ-10219, IBM.
[23]
Dong, Z. 2002. Towards Web Information Clustering. Ph.D. thesis, Southeast University, Nanjing, China.
[24]
Eades, P. and Tamassia, R. 1989. Algorithms for drawing graphs: an annotated bibliography. Tech. rep. CS-89-90, Department of Computer Science, Brown University.
[25]
Estivill-Castro, V. 2002. Why so many clustering algorithms: A position paper. SIGKDD Explor. 4, 1, 65--75.
[26]
Everitt, B. S., Landau, S., and Leese, M. 2001. Cluster Analysis, 4th Ed. Oxford University Press.
[27]
Ferragina, P. and Gulli, A. 2004. The Anatomy of SnakeT: A Hierarchical Clustering Engine for Web-Page Snippets. In Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 3202. Springer, 506--508.
[28]
Ferragina, P. and Gulli, A. 2005. A personalized search engine-based on Web-snippet hierarchical clustering. In Proceedings of the 14th International Conference on World Wide Web. ACM Press, 801--810.
[29]
Fred, A. L. N. and Jain, A. K. 2005. Combining multiple clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27, 6, 835--850.
[30]
Gabrilovich, E. 2006. Feature generation for textual information retrieval using world knowledge. Ph.D. thesis, Technion—Israel Institute of Technology, Haifa, Israel.
[31]
Ganter, B. and Wille, R. 1999. Formal Concept Analysis: Mathematical Foundations. Springer.
[32]
Geraci, F., Maggini, M., Pellegrini, M., and Sebastiani, F. 2008. Cluster generation and cluster labelling for Web snippets: A fast and accurate hierarchical solution. Internet Math. 3, 4, 413--443.
[33]
Giannotti, F., Nanni, M., Pedreschi, D., and Samaritani, F. 2003. WebCat: Automatic categorization of Web search results. In Proceedings of the 11th Italian Symposium on Advanced Database Systems (SEBD), S. Flesca, S. Greco, D. Saccà, and E. Zumpano, Eds. Rubettino Editore, 507--518.
[34]
Grefenstette, G. 1995. Comparing two language identification schemes. In Proceedings of the 3rd International Conference on Statistical Analysis of Textual Data (JADT'95). 263--268.
[35]
Haase, P., Hotho, A., Schmidt-Thieme, L., and Sure, Y. 2005. Collaborative and usage-driven evolution of personal ontologies. In Proceedings of the 2nd European Semantic Web Conference. Springer, 486--499.
[36]
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. 2001. On clustering validation techniques. J. Intell. Inform. Syst. 17, 2--3, 107--145.
[37]
Harabagiu, S. and Lacatusu, F. 2005. Topic themes for multi-document summarization. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 202--209.
[38]
Hartigan, J. A. 1975. Clustering Algorithms. Wiley.
[39]
Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., and Yee, K.-P. 2002. Finding the flow in Web site search. Comm. ACM (Special Issue: the Consumer Side of Search) 45, 9, 42--49.
[40]
Hearst, M. A. 2006. Clustering versus faceted categories for information exploration. Comm. ACM 49, 4, 59--61.
[41]
Hearst, M. A. and Pedersen, J. O. 1996. Reexamining the cluster hypothesis: scatter/gather on retrieval results. In Proceedings of the 19th ACM International Conference on Research and Development in Information Retrieval. ACM Press, 76--84.
[42]
Herman, I., Melancon, G., and Marshall, S. M. 2000. Graph visualization and navigation in information visualization: A survey. IEEE Trans. Visual. Comput. Graph. 6, 10, 1--21.
[43]
Hotho, A., Staab, S., and Stumme, G. 2003. Explaining text clustering results using semantic structures. In Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 2838. Springer, 217--228.
[44]
Husek, D., Pokorny, J., Rezankova, H., and Snasel, V. 2006. Data clustering: From documents to the Web. In Web Data Management Practices: Emerging Techniques and Technologies, A. Vakali and G. Pallis, Eds. Baker and Taylor, 1--33.
[45]
Jain, A. K. and Dubes, R. C. 1988. Algorithms for Clustering Data. Prentice-Hall.
[46]
Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data Clustering: A Review. ACM Comput. Surv. 31, 3, 264--323.
[47]
Johnson, B. and Shneiderman, B. 1991. Treemaps: A space-filling approach to the visualization of hierarchical information structures. In Proceedings of IEEE Visualization. IEEE Computer Society, San Diego, 284--291.
[48]
Käki, M. 2005. Findex: Search result categories help users when document ranking fails. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'05). ACM Press, 131--140.
[49]
Kantrowitz, M., Mohit, B., and Mittal, V. 2000. Stemming and its effects on TFIDF ranking. In Proceedings of the 23rd ACM International Conference on Research and Development in Information Retrieval. ACM Press, 357--359.
[50]
Karlson, A. K., Robertson, G. G., Robbins, D. C., Czerwinski, M., and Smith, G. 2006. FaThumb: A facet-based interface for mobile search. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM Press, 711--720.
[51]
Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and Giannopoulou, E. 2007. Ontology visualization methods a survey. ACM Comput. Surv. 39, 4, 1--43.
[52]
Kittler, J., Hatef, M., Duin, R. P., and Matas, J. 1998. On Combining Classifiers. IEEE Trans. Patt. Anal. Mach. Intell. 20, 3, 226--239.
[53]
Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., and Krishnapuram, R. 2004. A hierarchical monothetic document clustering algorithm for summarization and browsing search results. In Proceedings of the 13th International Conference on World Wide Web. ACM Press, 658--665.
[54]
Lawrie, D. J. and Croft, B. W. 2003. Generating hiearchical summaries for Web searches. In Proceedings of the 26th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 457--458.
[55]
Lawrie, D. J., Croft, B. W., and Rosenberg, A. 2001. Finding topic words for hierarchical summarization. In Proceedings of the 24th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 349--357.
[56]
Leuski, A. 2001. Evaluating document clustering for interactive information retrieval. In Proceedings of the 10th International Conference on Information and Knowledge Management. ACM Press, 33--40.
[57]
Leuski, A. and Croft, B. W. 1996. An evaluation of techniques for clustering search results. Tech. rep. IR-76, University of Massachusetts, Amherst.
[58]
Lin, D. and Pantel, P. 2002. Concept discovery from text. In Proceedings of the 19th International Conference on Computational Linguistics. Association for Computational Linguistics, 1--7.
[59]
Liu, T., Liu, S., Chen, Z., and Ma, W.-Y. 2003. An evaluation on feature selection for text clustering. In Proceedings of the 20th International Conference on Machine Learning, August 21--24, T. Fawcett and N. Mishra, Eds. AAAI Press, 488--495.
[60]
Liu, X. and Croft, B. W. 2004. Cluster-based retrieval using language models. In Proceedings of the 27th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 186--193.
[61]
Liu, X. and Croft, B. W. 2006. Representing clusters for retrieval. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 671--672.
[62]
Maarek, Y. S., Fagin, R., Ben-Shaul, I. Z., and Pelleg, D. 2000. Ephemeral document clustering for Web applications. Tech. rep. RJ 10186, IBM Research.
[63]
Manber, U. and Myers, G. 1993. Suffix Arrays: A new method for on-line string searches. SIAM J. Comput. 22, 5, 935--948.
[64]
Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to Information Retrieval. Cambridge University Press.
[65]
Manning, C. D. and Schütze, H. 1999. Foundations of Statistical Natural Language Processing. MIT Press.
[66]
Maslowska, I. 2003. Phrase-based hierarchical clustering of Web search results. In Proceedings of the 25th European Conference on IR Research, (ECIR). Lecture Notes in Computer Science, vol. 2633. Springer, 555--562.
[67]
Meng, W., Yu, C., and Liu, K.-L. 2002. Building efficient and effective metasearch engines. ACM Comput. Surv. 34, 1, 48--89.
[68]
Ngo, C. L. and Nguyen, H. S. 2004. A tolerance rough set approach to clustering Web search results. In Proceedings of the Knowledge Discovery in Databases: PKDD. Lecture Notes in Computer Science, vol. 3202. Springer, 515--517.
[69]
Osdin, R., Ounis, I., and White, R. W. 2002. Using hierarchical clustering and summarisation approaches for Web retrieval. In Proceedings of the 11th Text REtrieval Conference (TREC). National Institute of Standards and Technology (NIST).
[70]
Osiński, S. 2006. Improving quality of search results clustering with approximate matrix factorisations. In Proceedings of the 28th European Conference on Information Retrieval. Lecture Notes in Computer Science, vol. 3936. Springer, 167--178.
[71]
Osiński, S., Stefanowski, J., and Weiss, D. 2004. Lingo: Search results clustering algorithm based on singular value decomposition. In Proceedings of the International Intelligent Information Processing and Web Mining Conference. Advances in Soft Computing. Springer, 359--368.
[72]
Osiński, S. and Weiss, D. 2005. A concept-driven algorithm for clustering search results. IEEE Intell. Syst. 20, 3, 48--54.
[73]
Otterbacher, J., Radev, D. R., and Kareem, O. 2006. News to go: hierarchical text summarization for mobile devices. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 589--596.
[74]
Pantel, P. and Lin, D. 2002. Document Clustering With Committees. In Proceedings of the 25th ACM International Conference on Research and Development in Information Retrieval. ACM Press, 199--206.
[75]
Perugini, S. and Ramakrishnan, N. 2006. Interacting with Web hierarchies. IT Profess. 8, 4, 19--28.
[76]
Pierrakos, D. and Paliouras, G. 2005. Exploiting probabilistic latent information for the construction of community Web directories. In Proceedings of the 10th International Conference on User Modeling. Springer, 89--98.
[77]
Porter, M. F. 1997. An algorithm for suffix stripping. In Readings in Information Retrieval, K. S. Jones and P. Willett, Eds. Morgan Kaufmann, 313--316.
[78]
Rigou, M., Sirmakessis, S., and Tzimas, G. 2006. A method for personalized clustering in data intensive Web applications. In Proceedings of the Joint International Workshop on Adaptivity, Personalization and the Semantic Web, (APS). ACM Press, 35--40.
[79]
Rivadeneira, W. and Bederson, B. B. 2003. A study of search result clustering interfaces: Comparing textual and zoomable user interfaces. Tech. rep. HCIL-TR-2003-36, University of Maryland.
[80]
Roberts, J. C. 1998. On encouraging multiple views for visualization. In Proceedings of IEEE Symposium on InfoVis. IEEE Computer Society, 8--14.
[81]
Rodden, K., Basalaj, W., Sinclair, D., and Wood, K. R. 2001. Does organisation by similarity assist image browsing? In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM Press, 190--197.
[82]
Rose, D. E. and Levinson, D. 2004. Understanding user goals in Web search. In Proceedings of the 13th International Conference on World Wide Web. ACM Press, 13--19.
[83]
Sahoo, N., Callan, J., Krishnan, R., Duncan, G., and Padman, R. 2006. Incremental hierarchical clustering of text documents. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management. 357--366.
[84]
Salton, G., Wong, A., and Yang, C. S. 1975. A vector space model for automatic indexing. Comm. ACM 18, 11, 613--620.
[85]
Sarkar, M. and Brown, M. 1994. Graphical fisheye views. Comm. ACM 37, 12, 73--84.
[86]
Schütze, H. and Silverstein, C. 1997. Projections for efficient document clustering. In Proceedings of the 20th ACM International Conference on Research and Development in Information Retrieval. ACM Press, 74--81.
[87]
Sebastiani, F. 2002. Machine learning in automated text categorization. ACM Comput. Surv. 34, 1, 1--47.
[88]
Spiliopoulou, M., Schaal, M., Müller, R. M., and Brunzel, M. 2005. Evaluation of ontology enhancement tools. In Proceedings of the Semantics, Web and Mining, Joint International Workshops, EWMF and KDO. Lecture Notes in Computer Science, vol. 4289. Springer, 132--146.
[89]
Stasko, J. and Zhang, E. 2000. Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In Proceedings of IEEE Symposium on InfoVis. IEEE Computer Society, 57--65.
[90]
Stefanowski, J. and Weiss, D. 2003a. Carrot2 and language properties in Web search results clustering. In Proceedings of the 1st International Atlantic Web Intelligence Conference. Lecture Notes in Computer Science, vol. 2663. Springer, 240--249.
[91]
Stefanowski, J. and Weiss, D. 2003b. Web search results clustering in Polish: Experimental Evaluation of Carrot. In Proceedings of the International Intelligent Information Processing and Web Mining Conference. Advances in Soft Computing. Springer, 209--218.
[92]
Stein, B. and Meyer zu Eissen, S. 2004. Topic identification: Framework and application. In Proceedings of the 4th International Conference on Knowledge Management. 353--360.
[93]
Stein, B., Meyer zu Eissen, S., and Wibrock, F. 2003. On cluster validity and the information need of users. In Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and Applications (AIA). Springer, 216--221.
[94]
Tagarelli, A. and Greco, S. 2006. Toward semantic XML clustering. In Proceedings of the 6th SIAM International Conference on Data Mining (SDM). 188--199.
[95]
Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. K. 2004. The perfect search engine is not enough: a study of orienteering behavior in directed search. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM Press, 415--422.
[96]
Toda, H. and Kataoka, R. 2005. A search result clustering method using informatively named entities. In Proceedings of the 7th ACM International Workshop on Web Information and Data Management (WIDM). ACM Press, 81--86.
[97]
Tombros, A., Villa, R., and van Rijsbergen, K. 2002. The effectiveness of query-specific hierarchic clustering in information retrieval. Inform. Proc. Manag. 38, 4, 559--582.
[98]
Turetken, O. and Sharda, R. 2005. Clustering-based visual interfaces for presentation of Web search results: An empirical investigation. Inform. Syst. Front. 7, 3, 273--297.
[99]
Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249--260.
[100]
van Rijsbergen, K. 1979. Information Retrieval. Butterworth-Heinemann.
[101]
Wagstaff, K., Cardie, C., Rogers, S., and Scrödl, S. 2001. Constrained K-means clustering with background knowledge. In Proceedings of the 18th International Conference on Machine Learning. Morgan Kaufmann, 577--584.
[102]
Wang, X. and Zhai, C. 2007. Learn from Web search logs to organize search results. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 87--94.
[103]
Wang, Y. and Kitsuregawa, M. 2002. On combining link and contents information for Web page clustering. In Proceedings of the 13th International Conference on Database and Expert Systems Applications (DEXA). Springer, 902--913.
[104]
Weiss, D. 2006. Descriptive clustering as a method for exploring text collections. Ph.D. thesis, Poznan University of Technology, Poznań, Poland.
[105]
Willet, P. 1988. Recent trends in hierarchic document clustering: A critical review. Inform. Proc. Manag. 24, 5, 577--597.
[106]
Yang, Y. and Pedersen, J. O. 1997. A comparative study on feature selection in text categorization. In Proceedings of the 14th International Conference on Machine Learning (ICMC). Morgan Kaufmann, San Francisco, 412--420.
[107]
Ye, S., Chua, T.-S., and Kei, J. R. 2003. Querying and clustering Web pages about persons and organizations. In Proceedings of the IEEE/WIC International Conference on Web Intelligence. Springer, 344--350.
[108]
Zamir, O. and Etzioni, O. 1998. Web document clustering: A feasibility demonstration. In Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 46--54.
[109]
Zamir, O. and Etzioni, O. 1999. Grouper: A dynamic clustering interface to Web search results. Comput. Netw. 31, 11--16, 1361--1374.
[110]
Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., and Ma, J. 2004. Learning to cluster Web search results. In Proceedings of the 27th ACM International Conference on Research and Development in Information Retrieval. ACM Press, 210--217.
[111]
Zhang, D. and Dong, Y. 2004. Semantic, hierarchical, online clustering of Web search results. In Proceedings of 6th Asia-Pacific Web Conference (APWeb). Lecture Notes in Computer Science, vol. 3007. Springer, 69--78.
[112]
Zhang, Y.-J. and Liu, Z.-Q. 2004. Refining Web search engine results using incremental clustering. Int. J. Intell. Syst. 19, 191--199.
[113]
Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. 2005. Fully automatic wrapper generation for search engines. In Proceedings of the 14th International Conference on World Wide Web. ACM Press, 66--75.

Cited By

View all
  • (2024)A Case and Cluster-Based Framework for Reuse and Prioritization in Software TestingProceedings of the 20th Brazilian Symposium on Information Systems10.1145/3658271.3658312(1-10)Online publication date: 20-May-2024
  • (2024)Web Search Engine Results Page Viewing Formats for Different Search TasksInternational Journal of Human–Computer Interaction10.1080/10447318.2024.2376358(1-16)Online publication date: 29-Jul-2024
  • (2023)GRAFS: Graphical Faceted Search System to Support Conceptual Understanding in Exploratory SearchACM Transactions on Interactive Intelligent Systems10.1145/358831913:2(1-36)Online publication date: 31-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 41, Issue 3
July 2009
284 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/1541880
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2009
Accepted: 01 August 2008
Revised: 01 May 2008
Received: 01 December 2007
Published in CSUR Volume 41, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Information retrieval
  2. meta search engines
  3. search results clustering
  4. text clustring
  5. user interfaces

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)50
  • Downloads (Last 6 weeks)4
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Case and Cluster-Based Framework for Reuse and Prioritization in Software TestingProceedings of the 20th Brazilian Symposium on Information Systems10.1145/3658271.3658312(1-10)Online publication date: 20-May-2024
  • (2024)Web Search Engine Results Page Viewing Formats for Different Search TasksInternational Journal of Human–Computer Interaction10.1080/10447318.2024.2376358(1-16)Online publication date: 29-Jul-2024
  • (2023)GRAFS: Graphical Faceted Search System to Support Conceptual Understanding in Exploratory SearchACM Transactions on Interactive Intelligent Systems10.1145/358831913:2(1-36)Online publication date: 31-Mar-2023
  • (2023)Improve Firefly Heuristic Optimization Scheme for Web based Information Retrieval2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS)10.1109/ICICACS57338.2023.10100016(1-5)Online publication date: 24-Feb-2023
  • (2023)The vision of on-demand architectural knowledge systems as a decision-making companionJournal of Systems and Software10.1016/j.jss.2022.111560198:COnline publication date: 1-Apr-2023
  • (2022)Semantic Image Analysis on Social Networks and Data ProcessingHandbook of Research on Foundations and Applications of Intelligent Business Analytics10.4018/978-1-7998-9016-4.ch009(189-214)Online publication date: 2022
  • (2022)Data Analysis and Domain Knowledge for Strategic Competencies Using Business Intelligence and AnalyticsMathematics10.3390/math1101003411:1(34)Online publication date: 22-Dec-2022
  • (2022)Content Based Automated File Organization Using Machine Learning燗pproachesComputers, Materials & Continua10.32604/cmc.2022.02940073:1(1927-1942)Online publication date: 2022
  • (2022)Real-Time Visual Analysis of High-Volume Social Media PostsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311480028:1(879-889)Online publication date: 1-Jan-2022
  • (2022)Sentiment analysis researches story narrated by topic modeling approachSocial Sciences & Humanities Open10.1016/j.ssaho.2022.1003096:1(100309)Online publication date: 2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media