Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1542362.1542379acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
short-paper

Quadrilateral meshes with bounded minimum angle

Published: 08 June 2009 Publication History

Abstract

We present an algorithm that constructs a strictly convex quadrilateral mesh for a simple polygonal region in which no newly created angle is smaller than D(18.43) (=arctan(1/3)). This is the first known result on quadrilateral mesh generation with a provable guarantee on the minimum angle.

References

[1]
D. J. Allman. A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int. J. for Numerical Methods in Engineering, 26:717--730, 1988.
[2]
F. B. Atalay, S. Ramaswami, and D. Xu. Quadrilateral meshes with bounded minimum angle. In Proc. 17th International Meshing Roundtable, pages 73--91. Springer-Verlag, 2008.
[3]
S. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardema. A Comparison of All Hexahedral and All Tetrahedral Finite Element Meshes for Elastic and Elastic--Plastic Analysis. In Proceedings of the 4th International Meshing Roundtable, pages 179--192, 1995.
[4]
M. Bern and D. Eppstein. Quadrilateral meshing by circle packing. In Proc. 6th International Meshing Roundtable, pages 7--19, 1997.
[5]
M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J. Comp. Sys. Sci., 48:384--409, 1994.
[6]
T. Blacker and M. Stephenson. Paving: A new approach to automated quadrilateral mesh generation. Int. J. for Numerical Methods in Engineering, 32(4):811--847, 1991.
[7]
L. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th ACM Symposium on Computational Geometry, pages 274--280, 1993.
[8]
B. P. Johnston, J. M. Sullivan, and A. Kwasnik. Automatic conversion of triangular finite meshes to quadrilateral elements. Int. J. of Numerical Methods in Engineering, 31(1):67--84, 1991.
[9]
S. Mitchell and S. Vavasis. Quality Mesh generation in Three Dimensions. In Proc. 8th ACM Symp. on Computational Geometry, pages 212--221, 1992.
[10]
J. Shewchuk. Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery. In Proceedings of the 11th International Meshing Roundtable, pages 193--204, 2002.
[11]
O. C. Zienkiewicz and R. L. Taylor. The finite element method. McGraw-Hill, 1989.

Cited By

View all

Index Terms

  1. Quadrilateral meshes with bounded minimum angle

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCG '09: Proceedings of the twenty-fifth annual symposium on Computational geometry
    June 2009
    426 pages
    ISBN:9781605585017
    DOI:10.1145/1542362

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 June 2009

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. quadrilateral mesh generation

    Qualifiers

    • Short-paper

    Conference

    SoCG '09

    Acceptance Rates

    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media