Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1553374.1553417acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property

Published: 14 June 2009 Publication History

Abstract

We present an algorithm for finding an s-sparse vector x that minimizes the square-errory -- Φx2 where Φ satisfies the restricted isometry property (RIP), with isometric constant δ2s < 1/3. Our algorithm, called GraDeS (Gradient Descent with Sparsification) iteratively updates x as: [EQUATION]
where γ > 1 and Hs sets all but s largest magnitude coordinates to zero. GraDeS converges to the correct solution in constant number of iterations. The condition δ2s < 1/3 is most general for which a near-linear time algorithm is known. In comparison, the best condition under which a polynomial-time algorithm is known, is δ2s < √2 -- 1.
Our Matlab implementation of GraDeS outperforms previously proposed algorithms like Subspace Pursuit, StOMP, OMP, and Lasso by an order of magnitude. Curiously, our experiments also uncovered cases where L1-regularized regression (Lasso) fails but GraDeS finds the correct solution.

References

[1]
Berinde, R., Indyk, P., &amp; Ruzic, M. (2008). Practical near-optimal sparse recovery in the L1 norm. Allerton Conference on Communication, Control, and Computing. Monticello, IL.
[2]
Blumensath, T., &amp; Davies, M. E. (2008). Iterative hard thresholding for compressed sensing. Preprint.
[3]
Candès, E., &amp; Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21--30.
[4]
Candès, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Compte Rendus de l'Academie des Sciences, Paris, 1, 589--592.
[5]
Candès, E. J., &amp; Romberg, J. (2004). Practical signal recovery from random projections. SPIN Conference on Wavelet Applications in Signal and Image Processing.
[6]
Candès, E. J., Romberg, J. K., &amp; Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489--509.
[7]
Candès, E. J., &amp; Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51, 4203--4215.
[8]
Candès, E. J., &amp; Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52, 5406--5425.
[9]
Chen, S. S., Donoho, D. L., &amp; Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43, 129--159.
[10]
Dai, W., &amp; Milenkovic, O. (2008). Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity. ArXiv e-prints.
[11]
Do, T. T., Gan, L., Nguyen, N., &amp; Tran, T. D. (2008). Sparsity adaptive matching pursuit algorithm for practical compressed sensing. Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, California.
[12]
Donoho, D., &amp; Others (2009). SparseLab: Seeking sparse solutions to linear systems of equations. http://sparselab.stanford.edu/.
[13]
Donoho, D. L., &amp; Tsaig, Y. (2006). Fast solution of L1 minimization problems when the solution may be sparse. Technical Report, Institute for Computational and Mathematical Engineering, Stanford University.
[14]
Donoho, D. L., Tsaig, Y., Drori, I., &amp; Starck, J.-L. (2006). Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Preprint.
[15]
Efron, B., Hastie, T., Johnstone, I., &amp; Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407--499.
[16]
Figueiredo, M. A. T., &amp; Nowak, R. D. (2005). A bound optimization approach to wavelet-based image deconvolution. IEEE International Conference on Image Processing (ICIP) (pp. 782--785).
[17]
Golub, G., &amp; Loan, C. V. (1996). Matrix computations, 3rd ed. Johns Hopkins University Press.
[18]
Jung, H., Ye, J. C., &amp; Kim, E. Y. (2007). Improved k-t BLASK and k-t SENSE using FOCUSS. Phys. Med. Biol., 52, 3201--3226.
[19]
Lustig, M. (2008). Sparse MRI. Ph.D Thesis, Stanford University.
[20]
Ma, S., Yin, W., Zhang, Y., &amp; Chakraborty, A. (2008). An efficient algorithm for compressed MR imaging using total variation and wavelets. IEEE Confererence on Computer Vision and Pattern Recognition (CVPR) (pp. 1--8).
[21]
Mallat, S. G., &amp; Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 3397--3415.
[22]
Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal of Computing, 24, 227--234.
[23]
Needell, &amp; Tropp, J. A. (2008). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26, 301--321.
[24]
Needell, D., &amp; Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9, 317--334.
[25]
Neylon, T. (2006). Sparse solutions for linear prediction problems. Doctoral dissertation, Courant Institute, New York University.
[26]
Ranzato, M., Boureau, Y.-L., &amp; LeCun, Y. (2007). Sparse feature learning for deep belief networks. In Advances in neural information processing systems 20 (NIPS), 1185--1192. MIT Press.
[27]
Sarvotham, S., Baron, D., &amp; Baraniuk, R. (2006). Sudocodes - fast measurement and reconstruction of sparse signals. IEEE International Symposium on Information Theory (ISIT) (pp. 2804--2808). Seattle, Washington.
[28]
Tropp, J. A., &amp; Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Info. Theory, 53, 4655--4666.
[29]
Wainwright, M. J., Ravikumar, P., &amp; Lafferty, J. D. (2006). High-dimensional graphical model selection using l 1-regularized logistic regression. In Advances in neural information processing systems 19 (NIPS'06), 1465--1472. Cambridge, MA: MIT Press.
[30]
Zou, H., Hastie, T., &amp; Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15, 262--286.

Cited By

View all
  • (2024)MCMC Sampling-Based Randomized Likelihood Decoding for Sparse RecoveryIEEE Transactions on Communications10.1109/TCOMM.2023.332465872:1(465-479)Online publication date: Jan-2024
  • (2024)Stochastic IHT With Stochastic Polyak Step-Size for Sparse Signal RecoveryIEEE Signal Processing Letters10.1109/LSP.2024.342635331(2035-2039)Online publication date: 2024
  • (2024)A Novel Iterative Thresholding Algorithm for Arctangent Regularization ProblemICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP48485.2024.10448179(9651-9655)Online publication date: 14-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
June 2009
1331 pages
ISBN:9781605585161
DOI:10.1145/1553374

Sponsors

  • NSF
  • Microsoft Research: Microsoft Research
  • MITACS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

ICML '09
Sponsor:
  • Microsoft Research

Acceptance Rates

Overall Acceptance Rate 140 of 548 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)65
  • Downloads (Last 6 weeks)3
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2024)MCMC Sampling-Based Randomized Likelihood Decoding for Sparse RecoveryIEEE Transactions on Communications10.1109/TCOMM.2023.332465872:1(465-479)Online publication date: Jan-2024
  • (2024)Stochastic IHT With Stochastic Polyak Step-Size for Sparse Signal RecoveryIEEE Signal Processing Letters10.1109/LSP.2024.342635331(2035-2039)Online publication date: 2024
  • (2024)A Novel Iterative Thresholding Algorithm for Arctangent Regularization ProblemICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP48485.2024.10448179(9651-9655)Online publication date: 14-Apr-2024
  • (2024)Sufficient condition based on nearly optimal order RIC for IHT algorithmApplicable Analysis10.1080/00036811.2024.2311697(1-10)Online publication date: 31-Jan-2024
  • (2023)A Pseudo-Inverse-Based Hard Thresholding Algorithm for Sparse Signal RecoveryIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2022.317286824:7(7621-7630)Online publication date: Jul-2023
  • (2023)A ReLU-based hard-thresholding algorithm for non-negative sparse signal recoverySignal Processing10.1016/j.sigpro.2023.109260(109260)Online publication date: Sep-2023
  • (2023)Heavy-ball-based hard thresholding algorithms for sparse signal recoveryJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115264430(115264)Online publication date: Oct-2023
  • (2023)A review of spectrum sensing in modern cognitive radio networksTelecommunication Systems10.1007/s11235-023-01079-185:2(347-363)Online publication date: 24-Nov-2023
  • (2022)Stability and Risk Bounds of Iterative Hard ThresholdingIEEE Transactions on Information Theory10.1109/TIT.2022.317043468:10(6663-6681)Online publication date: Oct-2022
  • (2022)A Compressed Sensing Network for Acquiring Human Pressure InformationIEEE Transactions on Cognitive and Developmental Systems10.1109/TCDS.2020.304142214:2(388-402)Online publication date: Jun-2022
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media