Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1555816.1555835acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

A framework of energy efficient mobile sensing for automatic user state recognition

Published: 22 June 2009 Publication History

Abstract

Urban sensing, participatory sensing, and user activity recognition can provide rich contextual information for mobile applications such as social networking and location-based services. However, continuously capturing this contextual information on mobile devices consumes huge amount of energy. In this paper, we present a novel design framework for an Energy Efficient Mobile Sensing System (EEMSS). EEMSS uses hierarchical sensor management strategy to recognize user states as well as to detect state transitions. By powering only a minimum set of sensors and using appropriate sensor duty cycles EEMSS significantly improves device battery life. We present the design, implementation, and evaluation of EEMSS that automatically recognizes a set of users' daily activities in real time using sensors on an off-the-shelf high-end smart phone. Evaluation of EEMSS with 10 users over one week shows that our approach increases the device battery life by more than 75% while maintaining both high accuracy and low latency in identifying transitions between end-user activities.

References

[1]
A. T. Campbell, S. B. Eisenman, K. Fodor, N. D. Lane, H. Lu, E. Miluzzo, M. Musolesi, R. A. Peterson, and X. Zheng. Transforming the social networking experience with sensing presence from mobile phones. In Proceedings of SenSys Raleigh, NC, USA, 2008.
[2]
B. Hoh, M. GruteserandR. Herring, J. Ban, D. Work, J. Herrera, A. M. Bayen, M. Annavaram, and Q. Jacobson. Virtual trip lines for distributed privacy-preserving traffic monitoring. In Proceedings of MobiSys Breckenridge, CO, USA, June 2008.
[3]
Facebook. http://www.facebook.com.
[4]
MySpace. http://www.myspace.com.
[5]
H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor context-awareness in mobile devices and smart artifacts. Mobile Networks and Applications 7(5):341--351, 2002.
[6]
T. Stiefmeier, D. Roggen, G. Troster, G. Ogris, and P. Lukowicz. Wearable activity tracking in car manufacturing. In Pervasive Computing volume 7, pages 42--50, April-June 2008.
[7]
A. Andrew, Y. Anokwa, K. Koscher, J. Lester, and G. Borriello. Context to make you more aware. In Proceedings of ICDCSW Toronto, Ontario, Canada, 2007.
[8]
J. Lester, B. Hannaford, and G. Borriello. Are you with me?-using accelerometers to determine if two devices are carried by the same person. In Pervasive Computing pages 33--50, 2004.
[9]
T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway, J. Hightower, P. Klasnja, K. Koscher, An. LaMarca, J. A. Landay, L. LeGrand, J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile sensing platform:An embedded activity recognition system. In Pervasive Computing volume 7, pages 32--41, 2008.
[10]
N. D. Lane, H. Lu, S. B. Eisenman, and A. T. Campbell. Cooperative techniques supporting sensor-based people -centric inferencing. Lecture Notes in Computer Science 5013/2008:75--92, 2008.
[11]
P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster. Activity recognition from on-body sensors by classifier fusion:sensor scalability and robustness. In Proceedings of ISSNIP 2007.
[12]
L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. Pervasive Computing pages 1--17, 2004.
[13]
A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and W. V. D. Velde. Advanced interaction in context. In Proceedings of HUC Karlsruhe, Germany, 1999.
[14]
J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava. Participatory sensing. In WSW Workshop at SenSys Boulder, Colorado, USA, 2006.
[15]
D. Siewiorek, A. Smailagic, J. Furukawa, N. Moraveji, K. Reiger, and J. Shaffer. Sensay:a context-aware mobile phone. In Proceedings of ISWC White Plains, NY, USA, 2003.
[16]
E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell. Cenceme -injecting sensing presence into social networking applications. In Gerd Kortuem, Joe Finney, Rodger Lea, and Vasughi Sundramoorthy, editors, EuroSSC volume 4793 of Lecture Notes in Computer Science pages 1--28. Springer, 2007.
[17]
E. Miluzzo, N. Lane, K. Fodor, R. Peterson, S. Eisenman, H. Lu, M. Musolesi, X. Zheng, and A. Campbell. Sensing meets mobile social networks: The design, implementation and evaluation of the cenceme application. In Proceedings of SenSys Raleigh, NC, USA, November 2008.
[18]
S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt. Micro-blog:sharing and querying content through mobile phones and social participation. In Proceedings of MobiSys Breckenridge, Colorado, USA, 2008.
[19]
E. Welbourne, J. Lester, A. LaMarca, and G. Borriello. Mobile context inference using low-cost sensors. In Workshop on Location- and Context-Awareness Boulder, Colorado, USA, 2005.
[20]
P. Mohan, V. Padmanabhan, and R. Ramjee. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In Proceedings of SenSys Raleigh, NC, USA, 2008.
[21]
K. Whitesell, B. Kutler, N. Ramanathan, and D. Estrin. Determining indoor air quality from images of an air filter captured on cell phones. In ImageSense Workshop at SenSys Raleigh, NC, USA, 2008.
[22]
J. Lester, T. choudhury, G. Borriello, S. Consolvo, J. Landay, K. Everitt, and I. Smith. Sensing and modeling activities to support physical fitness. In Proceedings of UbiComp Tokyo, Japan, 2005.
[23]
S. Biswas and M. Quwaider. Body posture identification using hidden markov model with wearable sensor networks. In BodyNets Workshop Tempe, AZ, USA, March 2008.
[24]
M. Annavaram, N. Medvidovic, U. Mitra, S. Narayanan, D. Spruijt-Metz, G. Sukhatme, Z. Meng, S. Qiu, R. Kumar, and G. Thatte. Multimodal sensing for pediatric obesity applications. In UrbanSense08 Workshop at SenSys Raleigh, NC, USA, November 2008.
[25]
T. Gao, C. Pesto, L. Selavo, Y. Chen, J. Ko, J. Kim, A. Terzis, A. Watt, J. Jeng, B. Chen, K. Lorincz, and M. Welsh. Wireless medical sensor networks in emergency response:Implementation and pilot results. In HST Waltham, MA, USA, May 2008.
[26]
D. Jea, J. Liu, T. Schmid, and M. Srivastava. Hassle free fitness monitoring. In HealthNet Workshop at MobiSys Brekenridge, CO, USA, 2008.
[27]
W. H. Wu, L. K. Au, B. Jordan, T. Stathopoulos, M. A. Batalin, W. J. Kaiser, A. Vahdatpour, M. Sarrafzadeh, M. Fang, and J. Chodosh. Smartcane system:An assistive device for geriatrics. In BodyNets Workshop Tempe, AZ, USA, 2008.
[28]
M. A. Viredaz, L. S. Brakmo, and W. R. Hamburgen. Energy management on handheld devices. ACM Queue 1:44--52, 2003.
[29]
A. Krause, M. Ihmiq, E. Rankin, D. Leong, G. Smriti, D. Siewiorek, A. Smailaqic, M. Deisher, and U. Senqupta. Trading off prediction accuracy and power consumption for context-aware wearable computing. In Proceedings of ISWC Osaka, Japan, 2005.
[30]
P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In Proceedings of SOSP Banff, Alberta, Canada, 2001.
[31]
E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: an event driven energy saving strategy for battery operated devices. In Proceedings of MobiCom Atlanta, Georgia, USA, 2002.
[32]
J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken:hierarchical power management for mobile devices. In Proceedings of MobiSys Seattle, Washington, USA, 2005.
[33]
S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. Seemon:scalable and energy-efficient context monitoring framework for sensor-rich mobile environments. In Proceedings of MobiSys Breckenridge, CO, USA, 2008.
[34]
Nokia Energy Profiler. http://www.forum.nokia.com/main/resources/user experience/powermanagement/nokia energy profiler/.
[35]
SKYHOOK Wireless. http://www.skyhookwireless.com/.
[36]
G. Lu and T. Hankinson. A technique towards automatic audio classification and retrieval. In Proceedings of ICSP Beijing, China, 1998.
[37]
B. Gajic and K. K. Paliwal. Robust speech recognition in noisy environments based on subband spectral centroid histograms. In IEEE Transactions on speech and audio processing pages 600--608, 2006.

Cited By

View all
  • (2024)WashRing: An Energy-Efficient and Highly Accurate Handwashing Monitoring System via Smart RingIEEE Transactions on Mobile Computing10.1109/TMC.2022.322729923:1(971-984)Online publication date: Jan-2024
  • (2023)Intelligent Task Scheduling Approach for IoT Integrated Healthcare Cyber Physical SystemsIEEE Transactions on Network Science and Engineering10.1109/TNSE.2022.322384410:5(2429-2438)Online publication date: 1-Sep-2023
  • (2023)HAR-CO: A comparative analytical review for recognizing conventional human activity in stream data relying on challenges and approachesMultimedia Tools and Applications10.1007/s11042-023-16795-883:14(40811-40856)Online publication date: 10-Oct-2023
  • Show More Cited By

Index Terms

  1. A framework of energy efficient mobile sensing for automatic user state recognition

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      MobiSys '09: Proceedings of the 7th international conference on Mobile systems, applications, and services
      June 2009
      370 pages
      ISBN:9781605585666
      DOI:10.1145/1555816
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 June 2009

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. eemss
      2. energy efficiency
      3. human state recognition
      4. mobile sensing

      Qualifiers

      • Research-article

      Conference

      Mobisys '09
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 274 of 1,679 submissions, 16%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)46
      • Downloads (Last 6 weeks)8
      Reflects downloads up to 25 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)WashRing: An Energy-Efficient and Highly Accurate Handwashing Monitoring System via Smart RingIEEE Transactions on Mobile Computing10.1109/TMC.2022.322729923:1(971-984)Online publication date: Jan-2024
      • (2023)Intelligent Task Scheduling Approach for IoT Integrated Healthcare Cyber Physical SystemsIEEE Transactions on Network Science and Engineering10.1109/TNSE.2022.322384410:5(2429-2438)Online publication date: 1-Sep-2023
      • (2023)HAR-CO: A comparative analytical review for recognizing conventional human activity in stream data relying on challenges and approachesMultimedia Tools and Applications10.1007/s11042-023-16795-883:14(40811-40856)Online publication date: 10-Oct-2023
      • (2023)Further ReadingsSocial Edge Computing10.1007/978-3-031-26936-3_8(155-163)Online publication date: 20-Feb-2023
      • (2022)Probabilistic Cascading Classifier for Energy-Efficient Activity Monitoring in WearablesIEEE Sensors Journal10.1109/JSEN.2022.317588122:13(13407-13423)Online publication date: 1-Jul-2022
      • (2021)Reinforcement learning with state observation costs in action-contingent noiselessly observable markov decision processesProceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3541459(15650-15666)Online publication date: 6-Dec-2021
      • (2021)An Optimization Approach to Multi-Sensor Operation for Multi-Context RecognitionSensors10.3390/s2120686221:20(6862)Online publication date: 15-Oct-2021
      • (2021)A General Framework for Making Context-Recognition Systems More Energy EfficientSensors10.3390/s2103076621:3(766)Online publication date: 24-Jan-2021
      • (2021)FutureWare: Designing a Middleware for Anticipatory Mobile ComputingIEEE Transactions on Software Engineering10.1109/TSE.2019.294355447:10(2107-2124)Online publication date: 1-Oct-2021
      • (2021)Designing adaptive passive personal mobile sensing methods using reinforcement learning frameworkJournal of Ambient Intelligence and Humanized Computing10.1007/s12652-021-03432-114:4(3019-3040)Online publication date: 16-Aug-2021
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media