Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1576702.1576737acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Isolating real roots of real polynomials

Published: 28 July 2009 Publication History

Abstract

We describe a bisection algorithm for root isolation of polynomials with real coefficients. It is assumed that the coefficients can be approximated with arbitrary precision; exact computation in the field of coefficients is not required. We refer to such coefficients as bitstream coefficients. The algorithm is deterministic and has almost the same asymptotic complexity as the randomized algorithm of [12]. We also discuss a partial extension to multiple roots.

References

[1]
O. Aberth. Precise Numerical Analysis. William C. Brown Company Publishers, Dubuque, IA, USA, 1988.
[2]
A. Akritas and A. Strzebonski. A comparative study of two root isolation methods. Nonlinear Analysis: Modelling and Control, 10:297--304, 2005.
[3]
A. G. Akritas. The fastest exact algorithms for the isolation of the real roots of a polynomial equation. Computing, 24(4):299--313, 1980.
[4]
S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real and Algebraic Geometry. Springer, 2nd edition, 2006.
[5]
E. Berberich, M. Kerber, and M. Sagraloff. Exact geometric-topological analysis of algebraic surfaces. In SoCG, pages 164--173, 2008.
[6]
D. Bini and G. Fiorentino. Design, analysis and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms, 23:127--173, 2000.
[7]
CGAL (Computational Geometry Algorithms Library). www.cgal.org.
[8]
G. Collins, J. Johnson, and W. Krandick. Interval arithmetic in cylindrical algebraic decomposition. J. Symbolic Computation, 34:143--155, 2002.
[9]
G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descartes' rule of signs. In R. D. Jenks, editor, SYMSAC, pages 272--275, Yorktown Heights, NY, 1976. ACM Press.
[10]
A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Using Descartes' Rule of Signs. PhD thesis, Saarland University, 2008.
[11]
A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact analysis of real algebraic plane curves. In ISSAC, pages 151--158, 2007.
[12]
A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. An Exact Descartes Algorithm with Approximate Coefficients (Extended Abstract). In CASC, volume 3718 of LNCS, pages 138--149, 2005.
[13]
A. Eigenwillig, V. Sharma, and C. Yap. Almost tight complexity bounds for the Descartes method. In ISSAC, pages 151--158, 2006.
[14]
J. Gerhard. Modular algorithms in symbolic summation and symbolic integration. LNCS, Springer, 3218, 2004.
[15]
J. R. Johnson and W. Krandick. Polynomial real root isolation using approximate arithmetic. In W. Küchlin, editor, ISSAC, pages 225--232. ACM Press, 1997.
[16]
J. R. Johnson, W. Krandick, and A. D. Ruslanov. Architecture-aware classical taylor shift by 1. In ISSAC, pages 200--207, 2005.
[17]
M. Kerber. Analysis of real algebraic plane curves. Master's thesis, Saarland University, 2006. Master's thesis.
[18]
B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein's basis and real root isolation. Technical report, INRIA, 2004.
[19]
N. Obrechkoff. Zeros of Polynomials. Marina Drinov, Sofia, 2003. Translation of the Bulgarian original.
[20]
N. Obreschkoff. Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, 1963.
[21]
V. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Review, 39:187--220, 1997.
[22]
V. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factorization and root finding. J. Symbolic Computation, 33:701--733, 2002.
[23]
F. Roullier and P. Zimmermann. Efficient isolation of a polynomial's real roots. J. Computational and Applied Mathematics, pages 33--50, 2004.
[24]
I. J. Schoenberg. Zur Abzählung der reellen Wurzeln algebraischer Gleichungen. Mathematische Zeitschrift, pages 546--564, 1934.
[25]
A. Schönhage. The fundamental theorem of algebra in terms of computational complexity. http://www.informatik.uni-bonn.de/~schoe/fdmthmrep.ps.gz, 1982.
[26]
A. Schönhage. Quasi-GCD computations. Journal of Complexity, 1(1):118--137, 1985.
[27]
V. Sharma. Complexity of real root isolation using continued fractions. Theoretical Computer Science, 409:292--310, 2008.
[28]
E. Tsigaridas and I. Emiris. On the complexity of real root isolation using continued fractions. Theor. Comput. Sci., pages 158--173, 2008.
[29]
A. J. H. Vincent. Sur la résolution des equations numériques. Journal de Mathématiques Pures et Appliquées, 1:341--372, 1836.
[30]
C. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 1999.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
July 2009
402 pages
ISBN:9781605586090
DOI:10.1145/1576702
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 July 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bisection algorithm
  2. bitstream coefficient
  3. descartes' rule of sign
  4. real polynomial
  5. root isolation

Qualifiers

  • Research-article

Conference

ISSAC '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Theorem of Three Circles in CoqJournal of Automated Reasoning10.1007/s10817-013-9299-053:2(105-127)Online publication date: 1-Aug-2014
  • (2011)A simple but exact and efficient algorithm for complex root isolationProceedings of the 36th international symposium on Symbolic and algebraic computation10.1145/1993886.1993938(353-360)Online publication date: 8-Jun-2011
  • (2010)Automated construction and analysis of the design space for biochemical systemsBioinformatics10.1093/bioinformatics/btq47926:20(2601-2609)Online publication date: 7-Sep-2010
  • (2009)Visualizing Arcs of Implicit Algebraic Curves, Exactly and FastProceedings of the 5th International Symposium on Advances in Visual Computing: Part I10.1007/978-3-642-10331-5_57(608-619)Online publication date: 26-Nov-2009

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media