Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
poster

Stealthy poisoning attacks on PCA-based anomaly detectors

Published: 16 October 2009 Publication History

Abstract

We consider systems that use PCA-based detectors obtained from a comprehensive view of the network's traffic to identify anomalies in backbone networks. To assess these detectors' susceptibility to adversaries wishing to evade detection, we present and evaluate short-term and long-term data poisoning schemes that trade-off between poisoning duration and the volume of traffic injected for poisoning. Stealthy Boiling Frog attacks significantly reduce chaff volume,while only moderately increasing poisoning duration. ROC curves provide a comprehensive analysis of PCA-based detection on contaminated data, and show that even small attacks can undermine this otherwise successful anomaly detector.

References

[1]
M. Barreno, B. Nelson, R. Sears, A.D. Joseph, and J.D. Tygar. "Can machine learning be secure?". In Proc. ASIACCS'06, 2006.
[2]
A. Lakhina, M. Crovella, and C. Diot. "Diagnosing network-wide traffic anomalies". In Proc. SIGCOMM'04, pages 219--230, 2004.
[3]
T. Oetiker. The Multi Router Traffic Grapher. http://oss.oetiker.ch/mrtg/, 2008.
[4]
H. Ringberg, A. Soule, J. Rexford, and C. Diot. "Sensitivity of PCA for traffic anomaly detection". Proc. SIGMETRICS 07, 35(1):109--120, 2007.
[5]
B.I.P. Rubinstein, B. Nelson, L. Huang, A.D. Joseph, S. Lau, N. Taft, and D. Tygar. "Compromising PCA-based anomaly detectors for network-wide traffic". Technical Report No. UCB/EECS-2008-73, EECS Department, University of California, Berkeley, 2008.
[6]
B.I.P. Rubinstein, B. Nelson, L. Huang, A.D. Joseph, S. Lau, N. Taft, and J.D. Tygar. "Evading anomaly detection through variance injection attacks on PCA" (extended abstract). In Recent Advances in Intrusion Detection, volume 5230/2008 of Lecture Notes in Computer Science, pages 394--395, 2008.
[7]
Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. "Network anomography". In Proc. IMC 05, pages 1--14, NY, NY, USA, 2005.

Cited By

View all
  • (2024)Exposing Hidden Attackers in Industrial Control Systems Using Micro-DistortionsIEEE Transactions on Smart Grid10.1109/TSG.2023.330071015:2(2089-2101)Online publication date: Mar-2024
  • (2024)Rethinking security: the resilience of shallow ML modelsInternational Journal of Data Science and Analytics10.1007/s41060-024-00655-1Online publication date: 18-Oct-2024
  • (2023)PAC-learning for strategic classificationThe Journal of Machine Learning Research10.5555/3648699.364889124:1(9155-9192)Online publication date: 1-Jan-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMETRICS Performance Evaluation Review
ACM SIGMETRICS Performance Evaluation Review  Volume 37, Issue 2
September 2009
89 pages
ISSN:0163-5999
DOI:10.1145/1639562
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 October 2009
Published in SIGMETRICS Volume 37, Issue 2

Check for updates

Author Tags

  1. adversarial learning
  2. network traffic analysis
  3. principal components analysis

Qualifiers

  • Poster

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)2
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Exposing Hidden Attackers in Industrial Control Systems Using Micro-DistortionsIEEE Transactions on Smart Grid10.1109/TSG.2023.330071015:2(2089-2101)Online publication date: Mar-2024
  • (2024)Rethinking security: the resilience of shallow ML modelsInternational Journal of Data Science and Analytics10.1007/s41060-024-00655-1Online publication date: 18-Oct-2024
  • (2023)PAC-learning for strategic classificationThe Journal of Machine Learning Research10.5555/3648699.364889124:1(9155-9192)Online publication date: 1-Jan-2023
  • (2023)Client-specific Property Inference against Secure Aggregation in Federated LearningProceedings of the 22nd Workshop on Privacy in the Electronic Society10.1145/3603216.3624964(45-60)Online publication date: 26-Nov-2023
  • (2023)Improved Network Anomaly Detection Method2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC)10.1109/ITOEC57671.2023.10291368(101-104)Online publication date: 15-Sep-2023
  • (2022)Offensive Machine Learning Methods and the Cyber Kill ChainArtificial Intelligence and Cybersecurity10.1007/978-3-031-15030-2_6(125-145)Online publication date: 1-Aug-2022
  • (2021)Abnormal Access Behavior Detection of Ideological and Political MOOCs in Colleges and UniversitiesMobile Information Systems10.1155/2021/99777362021Online publication date: 1-Jan-2021
  • (2021)Machine Learning for Anomaly Detection: A Systematic ReviewIEEE Access10.1109/ACCESS.2021.30830609(78658-78700)Online publication date: 2021
  • (2020)Learning under p-tampering poisoning attacksAnnals of Mathematics and Artificial Intelligence10.1007/s10472-019-09675-188:7(759-792)Online publication date: 1-Jul-2020
  • (2020)Advanced persistent threat organization identification based on software gene of malwareTransactions on Emerging Telecommunications Technologies10.1002/ett.388431:12Online publication date: 22-Dec-2020
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media