Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1651318.1651326acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Mining cancer genes with running-sum statistics

Published: 06 November 2009 Publication History

Abstract

In this paper, we propose a new method to detect candidate cancer genes for developing molecular biomarkers or therapeutic targets from cancer microarray datasets. To resolve problems resulted in the molecular heterogeneity of cancers on gene prioritizing, our proposed method is intended to identify genes that are over- or down- expressed not in the whole cancer samples but also in a subgroup of cancer samples. To this end, we propose the RS score for gene ranking calculated with a weighted running sum statistic on the ordered list of expression values of each gene. We apply the proposed method to publically available prostate cancer microarray datasets, showing that it can identify previously well known prostate cancer associated genes such as ERG, HPN, and AMACR at the top of the list of candidate genes. Embedding samples, represented as vectors of the expression values of the top 20 genes, into a two dimensional space using the commute time embedding shows the distinction between normal samples and cancer samples in the independent test datasets as well as in the training datasets. We further evaluate the proposed method by estimating classification performance on the independent test datasets, and it shows the better classification performance compared to the other cancer outlier profile approaches.

References

[1]
C. Backes, A. Keller, J. Kuentzer, B. Kneissl, N. Comtesse, Y. A. Elnakady, R. Muller, E. Meese, and H.-P. Lenhof. Genetrail-advanced gene set enrichment analysis. Nucl. Acids Res., 35(suppl 2):W186--192, July 2007.
[2]
B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185--193, January 2003.
[3]
L. Breiman. Random forests. Machine Learning, 45(1):5--32, October 2001.
[4]
J. K. Burmester, B. K. Suarez, J. H. Lin, C. H. Jin, R. D. Miller, K. Q. Zhang, S. A. Salzman, D. J. Reding, and W. J. Catalona. Analysis of candidate genes for prostate cancer. Human heredity, 57(4):172--178, 2004.
[5]
C. Caldas and P. A. Edwards. A quantum leap in our knowledge of breast cancer mutations. Breast cancer research: BCR, 8(6):304+, December 2006.
[6]
W.-S. Cheng, R. Kraaij, B. Nilsson, L. van der Weel, C. M. A. de Ridder, T. H. Totterman, and M. Essand. A novel tarp-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther, 10(2):355--364, August 2004.
[7]
S. E. DePrimo, M. Diehn, J. B. Nelson, R. E. Reiter, J. Matese, M. Fero, R. Tibshirani, P. O. Brown, and J. D. Brooks. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome biology, 3(7), June 2002.
[8]
S. M. Dhanasekaran, T. R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. Delineation of prognostic biomarkers in prostate cancer. Nature, 412(6849):822--826, August 2001.
[9]
Y. Dong, H. Zhang, A. C. Gao, J. R. Marshall, and C. Ip. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Molecular Cancer Therapeutics, 4(7):1047--1055, July 2005.
[10]
M. Fujita, Y. Furukawa, T. Tsunoda, T. Tanaka, M. Ogawa, and Y. Nakamura. Up-regulation of the ectodermal-neural cortex 1 (enc1) gene, a downstream target of the beta-catenin/t-cell factor complex, in colorectal carcinomas. Cancer Res, 61(21):7722--7726, November 2001.
[11]
O. J. Halvorsen, K. Rostad, A. M. Oyan, H. Puntervoll, T. H. Bo, L. Stordrange, S. Olsen, S. A. Haukaas, L. Hood, I. Jonassen, K.-H. Kalland, and L. A. Akslen. Increased expression of sim2-s protein is a novel marker of aggressive prostate cancer. Clin Cancer Res, 13(3):892--897, February 2007.
[12]
F. Hong and R. Breitling. A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics, 24(3):374--382, February 2008.
[13]
Z. Jiang, B. A. Woda, C.-L. Wu, and X. J. Yang. Discovery and clinical application of a novel prostate cancer marker. American Journal of Clinical Pathology, 122(2):275--289, August 2004.
[14]
K. A. Kelly, S. R. Setlur, R. Ross, R. Anbazhagan, P. Waterman, M. A. Rubin, and R. Weissleder. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res, 68(7):2286--2291, April 2008.
[15]
H. Kim, G. H. Golub, and H. Park. Missing value estimation for dna microarray gene expression data: local least squares imputation. Bioinformatics, 21(2):187+, 2005.
[16]
J. Lapointe, C. Li, J. P. Higgins, M. van de Rijn, E. Bair, K. Montgomery, M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman, A. M. DeMarzo, R. Tibshirani, D. Botstein, P. O. Brown, J. D. Brooks, and J. R. Pollack. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A, 101(3):811--816, January 2004.
[17]
H. Lian. Most: detecting cancer differential gene expression. Biostat, pages kxm042+, November 2007.
[18]
A. J. Lind, P. Wikstr¨om, T. Granfors, L. Egevad, P. Stattin, and A. Bergh. Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. The Prostate, 62(4):394--399, 2005.
[19]
J.-H. Mao, I.-J. Kim, D. Wu, J. Climent, H. C. Kang, R. Delrosario, and A. Balmain. Fbxw7 targets mtor for degradation and cooperates with pten in tumor suppression. Science, 321(5895):1499--1502, September 2008.
[20]
R. Medeiros, A. Vasconcelos, S. Costa, D. Pinto, P. Ferreira, F. Lobo, A. Morais, J. Oliveira, and C. Lopes. Metabolic susceptibility genes and prostate cancer risk in a southern european population: The role of glutathione s-transferases gstm1, gstm3, and gstt1 genetic polymorphisms. The Prostate, 58(4):414--420, 2004.
[21]
V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstråle, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, and L. C. Groop. Pgc-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34(3):267--273, July 2003.
[22]
J. M. Mosquera, S. Perner, F. Demichelis, R. Kim, M. D. Hofer, K. D. Mertz, P. L. Paris, J. Simko, C. Collins, T. A. Bismar, A. M. Chinnaiyan, and M. A. Rubin. Morphological features of tmprss2-erg gene fusion prostate cancer. The Journal of pathology, 212(1):91--101, May 2007.
[23]
P. Pal, H. Xi, R. Kaushal, G. Sun, C. Jin, L. Jin, B. Suarez, W. Catalona, and R. Deka. Variants in the hepsin gene are associated with prostate cancer in men of european origin. Human Genetics, 120(2):187--192, September 2006.
[24]
F. Parl. Glutathione -transferase genotypes and cancer risk. Cancer Letters, 221(2):123--129, April 2005.
[25]
J. K. Parsons, E. A. Saria, M. Nakayama, R. L. Vessella, C. L. Sawyers, W. B. Isaacs, D. A. Faith, G. S. Bova, C. A. Samathanam, R. Mitchell, and A. M. De Marzo. Comprehensive mutational analysis and mrna isoform quantification of tp63 in normal and neoplastic human prostate cells. The Prostate, 69(5):559--569, 2009.
[26]
S. Peñuelas, V. Noé, and C. J. Ciudad. Modulation of impdh2, survivin, topoisomerase i and vimentin increases sensitivity to methotrexate in ht29 human colon cancer cells. The FEBS journal, 272(3):696--710, February 2005.
[27]
H. Qiu and E. R. Hancock. Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1873--1890, 2007.
[28]
M. A. Rubin, T. A. Bismar, O. Andren, L. Mucci, R. Kim, R. Shen, D. Ghosh, J. T. Wei, A. M. Chinnaiyan, H.-O. Adami, P. W. Kantoff, and J.-E. Johansson. Decreased alpha-methylacyl coa racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol Biomarkers Prev, 14(6):1424--1432, June 2005.
[29]
D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203--209, March 2002.
[30]
G. K. Smyth. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 3(1), 2004.
[31]
J. C. Strefford, T. M. Lane, A. Hill, L. LeRoux, N. J. Foot, J. Shipley, R. T. Oliver, Y. J. Lu, and B. D. Young. Molecular characterisation of the t(1;15)(p22;q22) translocation in the prostate cancer cell line lncap. Cytogenetic and genome research, 112(1-2):45--52, 2006.
[32]
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. From the cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102(43):15545--15550, October 2005.
[33]
H. Tanjore and R. Kalluri. The role of type iv collagen and basement membranes in cancer progression and metastasis. Am J Pathol, 168(3):715--717, March 2006.
[34]
Tibshirani, Robert, Hastie, and Trevor. Outlier sums for differential gene expression analysis. Biostatistics, 8(1):2--8, January 2007.
[35]
S. A. Tomlins, R. Mehra, D. R. Rhodes, X. Cao, L. Wang, S. M. Dhanasekaran, S. Kalyana-Sundaram, J. T. Wei, M. A. Rubin, K. J. Pienta, R. B. Shah, and A. M. Chinnaiyan. Integrative molecular concept modeling of prostate cancer progression. Nature Genetics, 39(1):41--51, December 2006.
[36]
S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra, X. W. Sun, S. Varambally, X. Cao, J. Tchinda, R. Kuefer, C. Lee, J. E. Montie, R. B. Shah, K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. Recurrent fusion of tmprss2 and ets transcription factor genes in prostate cancer. Science, 310(5748):644--648, October 2005.
[37]
V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98(9):5116--5121, April 2001.
[38]
H. F. Valenzuela, K. E. Pace, P. V. Cabrera, R. White, K. Porvari, H. Kaija, P. Vihko, and L. G. Baum. O-glycosylation regulates lncap prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res, 67(13):6155--6162, July 2007.
[39]
J. E. Visvader and G. J. Lindeman. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10):755--768, September 2008.
[40]
S. Wei, T. A. Dunn, W. B. Isaacs, A. M. De Marzo, and J. Luo. Golph2 and myo6: putative prostate cancer markers localized to the golgi apparatus. The Prostate, 68(13):1387--1395, September 2008.
[41]
B. Wu. Cancer outlier differential gene expression detection. Biostatistics, October 2006.
[42]
Y. P. Yu, D. Landsittel, L. Jing, J. Nelson, B. Ren, L. Liu, C. McDonald, R. Thomas, R. Dhir, S. Finkelstein, G. Michalopoulos, M. Becich, and J. H. Luo. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 22(14):2790--2799, July 2004.

Cited By

View all
  • (2016)Biological and combinatorial problems exploration using parallel and evolutionary computing2016 14th International Conference on ICT and Knowledge Engineering (ICT&KE)10.1109/ICTKE.2016.7804095(31-37)Online publication date: Nov-2016

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DTMBIO '09: Proceedings of the third international workshop on Data and text mining in bioinformatics
November 2009
106 pages
ISBN:9781605588032
DOI:10.1145/1651318
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cancer genes
  2. microarray
  3. outlier profiles analysis

Qualifiers

  • Research-article

Conference

CIKM '09
Sponsor:

Acceptance Rates

DTMBIO '09 Paper Acceptance Rate 8 of 18 submissions, 44%;
Overall Acceptance Rate 41 of 247 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2016)Biological and combinatorial problems exploration using parallel and evolutionary computing2016 14th International Conference on ICT and Knowledge Engineering (ICT&KE)10.1109/ICTKE.2016.7804095(31-37)Online publication date: Nov-2016

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media