Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1661412.1618514acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Optimizing walking controllers

Published: 01 December 2009 Publication History

Abstract

This paper describes a method for optimizing the parameters of a physics-based controller for full-body, 3D walking. A modified version of the SIMBICON controller [Yin et al. 2007] is optimized for characters of varying body shape, walking speed and step length. The objective function includes terms for power minimization, angular momentum minimization, and minimal head motion, among others. Together these terms produce a number of important features of natural walking, including active toe-off, near-passive knee swing, and leg extension during swing. We explain the specific form of our objective criteria, and show the importance of each term to walking style. We demonstrate optimized controllers for walking with different speeds, variation in body shape, and in ground slope.

References

[1]
Alexander, R. M. 2003. Principles of Animal Locomotion. Princeton University Press.
[2]
Anderson, F. C., and Pandy, M. G. 2001. Dynamic optimization of human walking. J. Biomech. Eng. 123, 5, 381--390.
[3]
Collins, S., Ruina, A., Tedrake, R., and Wisse, M. 2005. Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082--1085.
[4]
Coros, S., Beaudoin, P., Yin, K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Transactions on Graphics 27, 5 (Dec.), 113.
[5]
da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3 (Aug.), 82.
[6]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. SIGGRAPH 2001, ACM, 251--260.
[7]
Grzeszczuk, R., and Terzopoulos, D. 1995. Automated learning of muscle-actuated locomotion through control abstraction. In Proc. SIGGRAPH 1995, ACM, 63--70.
[8]
Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. NeuroAnimator: Fast neural network emulation and control of physics-based models. In Proc. SIGGRAPH 1998, ACM, 9--20.
[9]
Hansen, N. 2006. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms. Springer, 75--102.
[10]
Herr, H., and Popović, M. 2008. Angular momentum in human walking. J. of Exp. Biology 211, 467--481.
[11]
Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proc. SIGGRAPH 1997, ACM, 153--162.
[12]
Kim, J.-Y., Park, I.-W., and Oh, J.-H. 2007. Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intelligent and Robotic Systems 48, 4 (Apr.), 457--484.
[13]
Kudoh, S., Komura, T., and Ikeuchi, K. 2006. Stepping motion for a human-like character to maintain balance against large perturbations. In Proc. ICRA 2006, IEEE, 2661--2666.
[14]
Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. SIGGRAPH 1996, ACM, 155--162.
[15]
Li, Y., Wang, W., Crompton, R. H., and Gunther, M. M. 2001. Free vertical moments and transverse forces in human walking and their role in relation to arm-swing. J. of Exp. Biology 204, 47--58.
[16]
Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3 (July), 1062--1070.
[17]
Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Transactions on Graphics 28, 3 (July), 80.
[18]
Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28, 3 (July), 81.
[19]
Muybridge, E. 1887. Animal Locomotion. U. of Pennsylvania.
[20]
Novacheck, T. F. 1998. The biomechanics of running. Gait and Posture 7, 1 (Jan.), 77--95.
[21]
Pozzo, T., Berthoz, A., and Lefort, L. 1990. Head stabilization during various locomotor tasks in humans. Exp. Brain Res. 82, 97--106.
[22]
Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proc. ICRA 2005, IEEE, 2387--2392.
[23]
Sims, K. 1994. Evolving virtual creatures. In Proc. SIGGRAPH 1994, ACM, 15--22.
[24]
Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Transactions on Graphics 26, 3 (July), 107.
[25]
Tedrake, R., Zhang, T. W., and Seung, H. S. 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. IROS 2004, vol. 3, IEEE/RSJ, 2849--2854.
[26]
Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. in press. Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans. on Visualization and Computer Graphics.
[27]
van de Panne, M., and Fiume, E. 1993. Sensor-actuator networks. In Proc. SIGGRAPH 1993, ACM, 335--342.
[28]
van de Panne, M., and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Proc. CAS 1995, EG, 165--177.
[29]
Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Transactions on Graphics 28, 3 (July), 60.
[30]
Witkin, A., and Kass, M. 1988. Spacetime constraints. Computer Graphics (Proc. SIGGRAPH 88) 22, 4 (Aug.), 159--168.
[31]
Wooten, W. L., and Hodgins, J. K. 1996. Simulation of human diving. Computer Graphics Forum 15, 1 (Feb.), 3--13.
[32]
Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3 (July), 105.
[33]
Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transactions on Graphics 27, 3 (Aug.), 81.

Cited By

View all
  • (2024)SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised DistillationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657492(1-11)Online publication date: 13-Jul-2024
  • (2022)Real-Time Stylized Humanoid Behavior Control through Interaction and SynchronizationSensors10.3390/s2204145722:4(1457)Online publication date: 14-Feb-2022
  • (2022)PADL: Language-Directed Physics-Based Character ControlSIGGRAPH Asia 2022 Conference Papers10.1145/3550469.3555391(1-9)Online publication date: 29-Nov-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers
December 2009
669 pages
ISBN:9781605588582
DOI:10.1145/1661412
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. controller synthesis
  2. human motion
  3. optimization
  4. physics-based animation

Qualifiers

  • Research-article

Conference

SA09
Sponsor:
SA09: SIGGRAPH ASIA 2009
December 16 - 19, 2009
Yokohama, Japan

Acceptance Rates

SIGGRAPH Asia '09 Paper Acceptance Rate 70 of 275 submissions, 25%;
Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)22
  • Downloads (Last 6 weeks)2
Reflects downloads up to 30 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised DistillationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657492(1-11)Online publication date: 13-Jul-2024
  • (2022)Real-Time Stylized Humanoid Behavior Control through Interaction and SynchronizationSensors10.3390/s2204145722:4(1457)Online publication date: 14-Feb-2022
  • (2022)PADL: Language-Directed Physics-Based Character ControlSIGGRAPH Asia 2022 Conference Papers10.1145/3550469.3555391(1-9)Online publication date: 29-Nov-2022
  • (2022)Generative GaitNetACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530717(1-9)Online publication date: 27-Jul-2022
  • (2022)Learning to Get UpACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530697(1-10)Online publication date: 27-Jul-2022
  • (2022)ASEACM Transactions on Graphics10.1145/3528223.353011041:4(1-17)Online publication date: 22-Jul-2022
  • (2022)Skeleton‐level control for multi‐agent simulation through deep reinforcement learningComputer Animation and Virtual Worlds10.1002/cav.207933:3-4Online publication date: 3-Jun-2022
  • (2021)Efficient Hyperparameter Optimization for Physics-based Character AnimationProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34512544:1(1-19)Online publication date: 28-Apr-2021
  • (2021)Discovering diverse athletic jumping strategiesACM Transactions on Graphics10.1145/3450626.345981740:4(1-17)Online publication date: Aug-2021
  • (2021)AMPACM Transactions on Graphics10.1145/3450626.345967040:4(1-20)Online publication date: 19-Jul-2021
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media