Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Labeling schemes for vertex connectivity

Published: 06 April 2010 Publication History

Abstract

This article studies labeling schemes for the vertex connectivity function on general graphs. We consider the problem of assigning short labels to the nodes of any n-node graph is such a way that given the labels of any two nodes u and v, one can decide whether u and v are k-vertex connected in G, that is, whether there exist k vertex disjoint paths connecting u and v. This article establishes an upper bound of k2log n on the number of bits used in a label. The best previous upper bound for the label size of such a labeling scheme is 2klog n.

References

[1]
Abiteboul, S., Kaplan, H., and Milo, T. 2001. Compact labeling schemes for ancestor queries. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 547--556.
[2]
Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., and Rauhe, T. 2006. Compact labeling scheme for ancestor queries. SIAM J. Comput. 35, 1295--1309.
[3]
Alstrup, S., Bille, P., and Rauhe, T. 2005. Labeling schemes for small distances in trees. SIAM J. Disc. Math. 19, 448--462.
[4]
Alstrup, S., Gavoille, C., Kaplan, H., and Rauhe, T. 2004. Nearest common ancestors: A survey and a new distributed algorithm. Theory Comput. Syst. 37, 441--456.
[5]
Alstrup, S., and Rauhe, T. 2002. Small induced-universal graphs and compact implicit graph representations. In Proceedings of the 43'rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 53--62.
[6]
Breuer, M. A. 1966. Coding the vertexes of a graph. IEEE Trans. Inf. Theory, IT-12:148--153, 1966.
[7]
Breuer, M. A., and Folkman, J. 1967. An unexpected result on coding the vertices of a graph. J. Math. Anal. Appl. 20, 583--600.
[8]
Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. 2002. Reachability and distance queries via 2-hop labels. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 937--946.
[9]
Cohen, E., Kaplan, H., and Milo, T. 2002. Labeling dynamic XML trees. In Proceedings of the 21st ACM Symposium on Principles of Database Systems. ACM, New York, 271--281.
[10]
Even, S. 1979. Graph Algorithms. Computer Science Press.
[11]
Fraigniaud, P., and Gavoille, C. 2001. Routing in trees. In Proceedings of the 28th International Colloquium on Automata, Languages and Programming, 757--772.
[12]
Fraigniaud, P., and Gavoille, C. 2002. A space lower bound for routing in trees. In Proceedings of the 19th Symposium on Theoretical Aspects of Computer Science, 65--75.
[13]
Gavoille, C., Katz, M., Katz, N. A., Paul, C., and Peleg, D. 2001a. Approximate distance labeling schemes. In Proceedings of the 9th Annual European Symposium on Algorithms, 476--488.
[14]
Gavoille, C., and Labourel, A. 2007a. Shorter implicit representation for planar graphs and bounded treewidth graphs. In Proceedings of the 15th Annual European Symposium on Algorithms, 582--593.
[15]
Gavoille, C., and Labourel, A. 2007b. On local representation of distances in trees. In Proceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. ACM, New York, 352--353.
[16]
Gavoille, C., and Peleg, D. 2003. Compact and localized distributed data structures. J. Distrib. Comput. 16, 111--120.
[17]
Gavoille, C., Peleg, D., Pérennes S., and Raz, R. 2001b. Distance labeling in graphs. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 210--219.
[18]
Kannan, S., Naor, M., and Rudich, S. 1992. Implicit representation of graphs. SIAM J. Desc. Math. 5, 596--503.
[19]
Kaplan, H., and Milo, T. 2001. Short and simple labels for short distances and other functions. In Proceedings of the 7th International Workshop on Algorithms and Data Structures. Lecture Notes and Computer Science, vol. 2125. Springer-Verlag, Berlin, Germany, 246--257.
[20]
Kaplan, H., Milo, T., and Shabo, R. 2002. A comparison of labeling schemes for ancestor queries. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 954--963.
[21]
Katz, M., Katz, N. A., Korman, A., and Peleg D. 2004. Labeling schemes for flow and connectivity. SIAM J. Comput. 34, 23--40.
[22]
Katz, M., Katz, N. A., and Peleg D. Distance labeling schemes for well-separated graph classes. In Proceedings of 17th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, Vol. 1770. Springer-Verlag, Berlin, Germany, 516--528.
[23]
Korman, A. 2007. General compact labeling schemes for dynamic trees. J. Distrib. Comput. 20, 3, 179--193.
[24]
Korman, A. 2008. Improved compact routing schemes for dynamic trees. In Proceedings of the 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. ACM, New York, 185--194.
[25]
Korman, A., and Kutten, S. 2007a. Distributed verification of minimum spanning trees. J. Distrib. Comput. 20, 4, 253--266.
[26]
Korman, A., and Kutten, S. 2007b. Controller and estimator for dynamic networks. In Proceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. ACM, New York, 175--184.
[27]
Korman, A., and Peleg, D. 2007. Labeling schemes for weighted dynamic trees. J. Inf. Comput. 205, 12, 1721--1740.
[28]
Korman, A., Peleg, D., and Rodeh, Y. 2004. Labeling schemes for dynamic tree networks. Theory Comput. Syst. 37, 49--75.
[29]
Korman, A., Peleg, D., and Rodeh, Y. 2006. Constructing labeling schemes through universal matrices. In Proceedings of the 17th International Symposium on Algorithms and Computation, 409--418.
[30]
Peleg, D. 1999. Proximity-preserving labeling schemes and their applications. In Proceedings of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science, 30--41.
[31]
Peleg, D. 2000. Informative labeling schemes for graphs. In Proceedings of the 25th Symposium on Mathematical Foundations of Computer Science, 579--588.
[32]
Thorup, M. 2004. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51, 993--1024.
[33]
Thorup, M., and Zwick, U. 2001. Compact routing schemes. In Proceedings of the 13th ACM Symposium on Parallel Algorithms and Architecture. ACM, New York, 1--10.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 6, Issue 2
March 2010
373 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/1721837
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 April 2010
Accepted: 01 September 2008
Revised: 01 September 2008
Received: 01 July 2007
Published in TALG Volume 6, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Graph algorithms
  2. labeling schemes
  3. vertex-connectivity

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Better Distance Labeling for Unweighted Planar GraphsAlgorithmica10.1007/s00453-023-01133-z85:6(1805-1823)Online publication date: 1-Jun-2023
  • (2022)Optimal vertex connectivity oraclesProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3519945(151-161)Online publication date: 9-Jun-2022
  • (2022)Fault-tolerant distance labeling for planar graphsTheoretical Computer Science10.1016/j.tcs.2022.03.020918:C(48-59)Online publication date: 29-May-2022
  • (2021)Shorter labels for routing in treesProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458194(2174-2193)Online publication date: 10-Jan-2021
  • (2021)Frequency Assignment Model of Zero Divisor GraphJournal of Applied Mathematics10.1155/2021/66988152021(1-8)Online publication date: 9-Mar-2021
  • (2021)Better Distance Labeling for Unweighted Planar GraphsAlgorithms and Data Structures10.1007/978-3-030-83508-8_31(428-441)Online publication date: 9-Aug-2021
  • (2021)Fault-Tolerant Distance Labeling for Planar GraphsStructural Information and Communication Complexity10.1007/978-3-030-79527-6_18(315-333)Online publication date: 20-Jun-2021
  • (2020)Near-optimal induced universal graphs for cycles and pathsDiscrete Applied Mathematics10.1016/j.dam.2019.10.030282(1-13)Online publication date: Aug-2020
  • (2019)Adjacency Labeling Schemes and Induced-Universal GraphsSIAM Journal on Discrete Mathematics10.1137/16M110596733:1(116-137)Online publication date: 15-Jan-2019
  • (2019)Randomized proof-labeling schemesDistributed Computing10.1007/s00446-018-0340-832:3(217-234)Online publication date: 1-Jun-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media