Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1806689.1806762acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Optimal bounds for sign-representing the intersection of two halfspaces by polynomials

Published: 05 June 2010 Publication History

Abstract

The threshold degree of a function f:{0,1}n->{-1,+1} is the least degree of a real polynomial p with f=sgn p. We prove that the intersection of two halfspaces on {0,1}n has threshold degree Omega(n), which matches the trivial upper bound and completely answers a question due to Klivans (2002). The best previous lower bound was Omega(sqrt n). Our result shows that the intersection of two halfspaces on {0,1}n only admits a trivial 2Θ(n)-time learning algorithm based on sign-representation by polynomials, unlike the advances achieved in PAC learning DNF formulas and read-once Boolean formulas. The proof introduces a new technique of independent interest, based on Fourier analysis and matrix theory.

References

[1]
M. Alekhnovich, M. Braverman, V. Feldman, A. R. Klivans, and T. Pitassi. The complexity of properly learning simple concept classes. J. Comput. Syst. Sci., 74(1):16--34, 2008.
[2]
A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any AND-OR formula of size N can be evaluated in time N1-o(1) on a quantum computer. In Proc. of the 48th Symposium on Foundations of Computer Science (FOCS), pages 363--372, 2007.
[3]
R. I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random projection. Mach. Learn., 63(2):161--182, 2006.
[4]
J. Aspnes, R. Beigel, M. L. Furst, and S. Rudich. The expressive power of voting polynomials. Combinatorica, 14(2):135--148, 1994.
[5]
R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity, 4:339--349, 1994.
[6]
R. Beigel, N. Reingold, and D. A. Spielman. PP is closed under intersection. J. Comput. Syst. Sci., 50(2):191--202, 1995.
[7]
A. Blum and R. Kannan. Learning an intersection of a constant number of halfspaces over a uniform distribution. J. Comput. Syst. Sci., 54(2):371--380, 1997.
[8]
A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural Networks, 5:117--127, 1992.
[9]
H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On computation and communication with small bias. In Proc. of the 22nd Conf. on Computational Complexity (CCC), pages 24--32, 2007.
[10]
E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND tree. Theory of Computing, 4(1):169--190, 2008.
[11]
S. A. Gershgorin. Ueber die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. U.S.S.R. Otd. Fiz.-Mat. Nauk, 7:749--754, 1931.
[12]
J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. J. Comput. Syst. Sci., 55(3):414--440, 1997.
[13]
S. Jukna. Extremal Combinatorics with Applications in Computer Science. Springer--Verlag, Berlin, 2001.
[14]
S. Khot and R. Saket. On hardness of learning intersection of two halfspaces. In Proc. of the 40th Symposium on Theory of Computing (STOC), pages 345--354, 2008.
[15]
A. R. Klivans. A Complexity-Theoretic Approach to Learning. PhD thesis, MIT, 2002.
[16]
A. R. Klivans, P. M. Long, and A. K. Tang. Baum's algorithm learns intersections of halfspaces with respect to log-concave distributions. In Proc. of the 13th Intl. Workshop on Randomization and Computation, pages 588--600, 2009.
[17]
A. R. Klivans, R. O'Donnell, and R. A. Servedio. Learning intersections and thresholds of halfspaces. J. Comput. Syst. Sci., 68(4):808--840, 2004.
[18]
A. R. Klivans and R. A. Servedio. Learning DNF in time 2 O(n1/3). J. Comput. Syst. Sci., 68(2):303--318, 2004.
[19]
A. R. Klivans and R. A. Servedio. Learning intersections of halfspaces with a margin. J. Comput. Syst. Sci., 74(1):35--48, 2008.
[20]
A. R. Klivans and A. A. Sherstov. Cryptographic hardness for learning intersections of halfspaces. J. Comput. Syst. Sci., 75(1):2--12, 2009.
[21]
M. Krause and P. Pudlák. On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci., 174(1--2):137--156, 1997.
[22]
M. Krause and P. Pudlák. Computing Boolean functions by polynomials and threshold circuits. Comput. Complex., 7(4):346--370, 1998.
[23]
S. Kwek and L. Pitt. PAC learning intersections of halfspaces with membership queries. Algorithmica, 22(1/2):53--75, 1998.
[24]
T. Lee. A note on the sign degree of formulas, 2009. Available at http://arxiv.org/abs/0909.4607.
[25]
M. L. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge, 1969.
[26]
S. Muroga. Threshold Logic and Its Applications. John Wiley & Sons, New York, 1971.
[27]
J. Myhill and W. H. Kautz. On the size of weights required for linear-input switching functions. IRE Trans. on Electronic Computers, 10(2):288--290, 1961.
[28]
D. J. Newman. Rational approximation to |x|. Michigan Math. J., 11(1):11--14, 1964.
[29]
R. O'Donnell and R. A. Servedio. New degree bounds for polynomial threshold functions. In Proc. of the 35th Symposium on Theory of Computing (STOC), pages 325--334, 2003.
[30]
R. Paturi and M. E. Saks. Approximating threshold circuits by rational functions. Inf. Comput., 112(2):257--272, 1994.
[31]
A. A. Razborov and A. A. Sherstov. The sign-rank of AC0. SIAM J. Comput., 39(5):1833--1855, 2010. Preliminary version in 49th FOCS, 2008.
[32]
T. J. Rivlin. An Introduction to the Approximation of Functions. Dover Publications, New York, 1981.
[33]
M. E. Saks. Slicing the hypercube. Surveys in Combinatorics, pages 211--255, 1993.
[34]
A. A. Sherstov. The intersection of two halfspaces has high threshold degree. In Proc. of the 50th Symposium on Foundations of Computer Science (FOCS), 2009.
[35]
A. A. Sherstov. The pattern matrix method. SIAM J. Comput., 2010. To appear. Preliminary version in 40th STOC, 2008.
[36]
A. A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113--2129, 2009. Preliminary version in 39th STOC, 2007.
[37]
A. A. Sherstov. The unbounded-error communication complexity of symmetric functions. In Proc. of the 49th Symposium on Foundations of Computer Science (FOCS), pages 384--393, 2008.
[38]
K.-Y. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM J. Discrete Math., 4(3):423--435, 1991.
[39]
K.-Y. Siu, V. P. Roychowdhury, and T. Kailath. Rational approximation techniques for analysis of neural networks. IEEE Transactions on Information Theory, 40(2):455--466, 1994.
[40]
L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134--1142, 1984.
[41]
S. Vempala. A random sampling based algorithm for learning the intersection of halfspaces. In Proc. of the 38th Symposium on Foundations of Computer Science (FOCS), pages 508--513, 1997.
[42]
E. I. Zolotarev. Application of elliptic functions to questions of functions deviating least and most from zero. Izvestiya Imp. Akad. Nauk, 30(5), 1877.

Cited By

View all
  • (2020)Quantum lower bounds for approximate counting via laurent polynomialsProceedings of the 35th Computational Complexity Conference10.4230/LIPIcs.CCC.2020.7(1-47)Online publication date: 28-Jul-2020
  • (2015)Hardness Amplification and the Approximate Degree of Constant-Depth CircuitsAutomata, Languages, and Programming10.1007/978-3-662-47672-7_22(268-280)Online publication date: 20-Jun-2015
  • (2014)Breaking the minsky-papert barrier for constant-depth circuitsProceedings of the forty-sixth annual ACM symposium on Theory of computing10.1145/2591796.2591871(223-232)Online publication date: 31-May-2014
  • Show More Cited By

Index Terms

  1. Optimal bounds for sign-representing the intersection of two halfspaces by polynomials

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '10: Proceedings of the forty-second ACM symposium on Theory of computing
    June 2010
    812 pages
    ISBN:9781450300506
    DOI:10.1145/1806689
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 June 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. halfspaces
    2. intersections of halfspaces
    3. pac learning
    4. polynomial representations of boolean functions

    Qualifiers

    • Research-article

    Conference

    STOC'10
    Sponsor:
    STOC'10: Symposium on Theory of Computing
    June 5 - 8, 2010
    Massachusetts, Cambridge, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Upcoming Conference

    STOC '25
    57th Annual ACM Symposium on Theory of Computing (STOC 2025)
    June 23 - 27, 2025
    Prague , Czech Republic

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)Quantum lower bounds for approximate counting via laurent polynomialsProceedings of the 35th Computational Complexity Conference10.4230/LIPIcs.CCC.2020.7(1-47)Online publication date: 28-Jul-2020
    • (2015)Hardness Amplification and the Approximate Degree of Constant-Depth CircuitsAutomata, Languages, and Programming10.1007/978-3-662-47672-7_22(268-280)Online publication date: 20-Jun-2015
    • (2014)Breaking the minsky-papert barrier for constant-depth circuitsProceedings of the forty-sixth annual ACM symposium on Theory of computing10.1145/2591796.2591871(223-232)Online publication date: 31-May-2014
    • (2012)Making polynomials robust to noiseProceedings of the forty-fourth annual ACM symposium on Theory of computing10.1145/2213977.2214044(747-758)Online publication date: 19-May-2012
    • (2010)A random-sampling-based algorithm for learning intersections of halfspacesJournal of the ACM10.1145/1857914.185791657:6(1-14)Online publication date: 5-Nov-2010
    • (2010)New Upper Bounds on the Average PTF Density of Boolean FunctionsAlgorithms and Computation10.1007/978-3-642-17517-6_28(304-315)Online publication date: 2010

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media